Publications by authors named "Parisa Hejazi"

The widespread adoption of Poly(3-hydroxybutyrate) (PHB) encounters challenges due to its higher production costs compared to conventional plastics. To overcome this obstacle, this study investigates the use of low-cost raw materials and optimized production methods. Specifically, food processing byproducts such as corn germ and corn bran were utilized as solid substrates through solid-state fermentation, enriched with molasses and cheese whey.

View Article and Find Full Text PDF

In this research, biodegradation of hexadecane as a model contaminant in solid soil using both free and immobilized Pseudomonas Aeruginosa, capable of producing biosurfactant, was investigated. Coconut fibers in three mesh sizes were used as a cellulosic biocarrier for immobilization procedure. Bioremediation experiments were monitored for 60 days after incubation at 27 °C in small columns, containing contaminated solid soil, with the capability of aeration from bottom to top.

View Article and Find Full Text PDF

The immobilization of cellulase on amine-functionalized FeO magnetic nanoparticles (MNPs), via metal affinity immobilization, as a nano-biocatalyst was investigated. Copper was chosen as ligand and loaded onto MNPs in a buffering environment without adding any intermediates. Immobilization conditions were optimized by a 2 full factorial design method.

View Article and Find Full Text PDF

Nowadays, the use of agricultural by-products, as the cheap substrate for the production of value-added products, is of high interest for the researchers and practitioners. Cellulase is a relatively expensive and a very important industrial enzyme where in this study was produced form rice by-products under solid-state fermentation. A new mutant of was used for cellulase production.

View Article and Find Full Text PDF

This research develops on our previous semi-mechanistic model that describes the dynamic physical and biochemical processes taking place in a packed-bed bioreactor to analyze the relationship of nutrient limitation, biomass accumulation, metabolic heat generation, and mathematical description of packed-bed porous media. The experimental and simulation data proved that glucose concentration gradients in the biofilm could be neglected due to small biofilm thickness and high diffusivity of glucose in the biofilm. The prediction results also showed that an increase in the initial substrate concentration leads to a rise in the temperature gradient in the bed.

View Article and Find Full Text PDF

Since slurry phase bioremediation is a promising treatment for recalcitrant compounds such as 2,4,6-trinitrotoluene (TNT), a statistical study was conducted for the first time to optimize TNT removal (TR) in slurry phase. Fractional factorial design method, 2(IV)(7-3), was firstly adopted and four out of the seven examined factors were screened as effective. Subsequently, central composite design and response surface methodology were employed to model and optimize TR within 15 days.

View Article and Find Full Text PDF

Clayey soils contaminated with organic pollutants are nowadays one of the important environmental issues as they are highly reluctant to conventional bioremediation techniques. In this study, biodegradability of n-hexadecane as a model contaminant in oil polluted clayey soil by an indigenous bacterium was investigated. Maximal bacterial growth was achieved at 8% (v/v) n-hexadecane as sole carbon and energy sources in aqueous phase.

View Article and Find Full Text PDF

A new method for disruption of Gram-negative bacterium Ralstonia eutropha by supercritical CO(2) for poly(beta-hydroxybutyrate) (PHB) recovery is proposed. The effects of different parameters such as exposure time, pressure, temperature, volume of methanol as a modifier, and culture history on cell disruption efficiency were investigated using Taguchi's statistical approach to determine optimum conditions. The optimum conditions for cell disruption and PHB recovery were as follows: exposure time, 100 min; pressure, 200 atm; temperature, 40 degrees C; volume of methanol, 0.

View Article and Find Full Text PDF