Microstrip transmission lines loaded with dumbbell defect-ground-structure (DB-DGS) resonators transversally oriented have been exhaustively used in microwave circuits and sensors. Typically, these structures have been modelled by means of a parallel LC resonant tank series connected to the host line. However, the inductance and capacitance of such model do not have a physical meaning, since this model is inferred by transformation of a more realistic model, where the DB-DGS resonator, described by means of a resonant tank with inductance and capacitance related to the geometry of the DB-DGS, is magnetically coupled to the host line.
View Article and Find Full Text PDFPlanar phase-variation microwave sensors have attracted increasing interest in recent years since they combine the advantages of planar technology (including low cost, low profile, and sensor integration with the associated circuitry for post-processing and communication purposes, among others) and the possibility of operation at a single frequency (thereby reducing the costs of the associated electronics). This paper reviews and compares three different strategies for sensitivity improvement in such phase-variation sensors (devoted to material characterization). The considered approaches include line elongation (through meandering), dispersion engineering (by considering slow-wave artificial transmission lines), and reflective-mode sensors based on step-impedance open-ended lines.
View Article and Find Full Text PDFIn this paper, reflective-mode phase-variation sensors based on open-ended stepped-impedance transmission lines with optimized sensitivity for their use as defect detectors and dielectric constant sensors are reported. The sensitive part of the sensors consists of either a 90° high-impedance or a 180° low-impedance open-ended sensing line. To optimize the sensitivity, such a sensing line is cascaded to a 90° transmission line section with either low or high characteristic impedance, resulting in a stepped-impedance transmission line configuration.
View Article and Find Full Text PDFThis paper highlights interest in the implementation of microwave sensors based on resonant elements, the subject of a special issue in the journal. A classification of these sensors on the basis of the operating principle is presented, and the advantages and limitations of the different sensor types are pointed out. Finally, the paper summarizes the different contributions to the special issue.
View Article and Find Full Text PDFA microstrip defect ground structure (DGS) based on a pair of dumbbell-shaped slots is used for sensing. The device is a differential sensor consisting of a pair of mirrored lines loaded with a dumbbell-shaped DGS, and the output variable is the cross-mode transmission coefficient. Such a variable is very sensitive to asymmetries in the line pair, e.
View Article and Find Full Text PDFIn this paper, an analytical method to estimate the complex dielectric constant of liquids is presented. The method is based on the measurement of the transmission coefficient in an embedded microstrip line loaded with a complementary split ring resonator (CSRR), which is etched in the ground plane. From this response, the dielectric constant and loss tangent of the liquid under test (LUT) can be extracted, provided that the CSRR is surrounded by such LUT, and the liquid level extends beyond the region where the electromagnetic fields generated by the CSRR are present.
View Article and Find Full Text PDFIn this paper, several configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) are analyzed. Such structures are useful as sensors and comparators, and the main aim of the paper is to show that the proposed configurations are useful for the optimization of sensitivity and discrimination. Specifically, for comparison purposes, i.
View Article and Find Full Text PDF