Environ Sci Pollut Res Int
March 2024
Bisphenols (bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF)) are widely used as additives in numerous industries and therefore they are ubiquitously present throughout the world's natural environment including water. A review of the literature is presented on their sources, pathways of entry into the environment, and especially aquatic contexts, their toxicity to humans and other organisms and the technologies for removing them from water. The treatment technologies used are mostly adsorption, biodegradation, advanced oxidation, coagulation, and membrane separation processes.
View Article and Find Full Text PDFWhen discharged into wastewater, pharmaceuticals and personal care products (PPCPs) become microorganic contaminants and are among the largest groups of emerging pollutants. Human, animal, and aquatic organisms' exposures to PPCPs have linked them to an array of carcinogenic, mutagenic, and reproductive toxicity risks. For this reason, various methods are being implemented to remove them from water bodies.
View Article and Find Full Text PDFElevated concentrations of natural organic matter (NOM) and organic micropollutants (OMPs) can contaminate the quality of drinking water, and current water treatment technologies are not always successful in removing all their constituents. Ozonation and adsorption are two advanced processes with different removal mechanisms used to treat NOM and OMPs. Their treatment efficiency depends on the strength and kinetics of adsorption and ozonation (ozone molecule and OH radical (OH•) reaction) of the individual NOM constituents and OMPs.
View Article and Find Full Text PDFAmmonium removal from drinking water to protect human and environmental health is one of the major global concerns. This study evaluates the performance of Purolite C100E, a commercial cation exchange resin, in eliminating ammonium in synthetic and real contaminated groundwater. The results demonstrate that the pH operation range of the resin for better ammonium removal is 3 to 8.
View Article and Find Full Text PDFDue to increasing application in the green energy sector, rare earth elements (REEs) have become a precious commodity in the international market. The REEs, Yttrium (Y) and Lutetium (Lu) are used as catalysts in wide array of industries. SBA-15 modified with 1,4-phthaloyl diamido-propyltriethoxysilane (1,4-PA-APTES) ligands; and chromium based metal organic frameworks (MOF) modified with PMIDA (MIL-101-PMIDA) were prepared in this study as potential adsorbents for recovery of these elements.
View Article and Find Full Text PDFReverse osmosis concentrate (ROC) generated as a waste stream during reverse osmosis treatment of reclaimed wastewater, presents significant disposal challenges. This is because it causes environmental pollution when it is disposed to lands and natural water bodies. A long-term dynamic adsorption experiment was conducted by passing ROC from a wastewater reclamation plant, firstly through a granular activated carbon (GAC) column, and subsequently through an anion exchange resin (Purolite) column, for the removal of two major ROC pollutants, namely dissolved organic carbon (DOC) and microorganic pollutants (MOP).
View Article and Find Full Text PDFPorous luffa plant fibre (LF) was grafted with Fe and Zr, and the ability of the fabricated adsorbents to remove arsenate (As(V)) from water was investigated in batch and column adsorption experiments. The Langmuir adsorption capacity (mg g) at pH 7 of LF was found to be 0.035, which increased to 2.
View Article and Find Full Text PDFArsenic contamination of drinking water is a serious water quality problem in many parts of the world. In this study, a low-cost manganese oxide ore from Vietnam (Vietnamese manganese oxide (VMO)) was firstly evaluated for its performance in arsenate (As(V)) removal from water. This material contains both Mn (25.
View Article and Find Full Text PDFIn the Red River Delta, Vietnam, arsenic (As) contamination of groundwater is a serious problem where more than seventeen million people are affected. Millions of people in this area are unable to access clean water from the existing centralized water treatment systems. They also cannot afford to buy expensive household water filters.
View Article and Find Full Text PDFAssessing urban stormwater quality by investigation and characterisation of pollutants is a prerequisite for its effective management, for reuse and safe discharge. The stochastic nature of rainfall, dry weather periods, topology, human activities and climatic conditions generate and wash-off pollutants differently from event to event. This study investigated the major physico-chemical pollutants in stormwater runoff collected from an urban catchment over a period of two years.
View Article and Find Full Text PDFArsenic (As) contamination of drinking water is a major cause of As toxicity in many parts of the world. A study was conducted to evaluate As removal from water containing 100-700 μg/L of As and As to Fe concentration ratios of 1:5-1:1000 using the coprecipitation process with and without As/Fe adsorption onto granular activated carbon (GAC). Fe concentration required to reduce As concentrations in order to achieve the WHO standard level of 10 μg/L increased exponentially with the increase in initial As concentration.
View Article and Find Full Text PDFArsenic is a major drinking water contaminant in many countries causing serious health hazards, and therefore, attempts are being made to remove it so that people have safe drinking water supplies. The effectiveness of arsenic removal from As(V) solutions using granular activated carbon (GAC) (zero point of charge (ZPC) pH 3.2) and iron incorporated GAC (GAC-Fe) (ZPC pH 8.
View Article and Find Full Text PDFAlthough reverse osmosis produces high quality reusable water from wastewater the rejected concentrate (ROC) poses potentially serious health hazards to non-target species. This is especially the case when it is disposed into aquatic environments due to the presence of high concentrations of dissolved natural organics, micro-organic pollutants (MOPs) and other pollutants. In batch and column studies we found that granular activated carbon (GAC) was very effective in simultaneously removing dissolved organic carbon (DOC) and 18 MOPs from ROC.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) and heavy metals are dangerous pollutants that commonly co-occur in water. An adsorption study conducted on the simultaneous removal of PAHs (acenaphthylene, phenanthrene) and heavy metals (Cd, Cu, Zn) by granular activated carbon (GAC) showed that, when these pollutants are present together, their adsorption was less than when they were present individually. The adsorptive removal percentage of PAHs (initial concentration 1 mg/L) was much higher than that of heavy metals (initial concentration (20 mg/L).
View Article and Find Full Text PDFElevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs.
View Article and Find Full Text PDFHeavy metals can be serious pollutants of natural water bodies causing health risks to humans and aquatic organisms. The purpose of this study was to investigate the removal of five heavy metals from water by adsorption onto an iron industry blast furnace slag waste (point of zero charge (PZC) pH 6.0; main constituents, Ca and Fe) and a coal industry fly ash waste (PZC 3.
View Article and Find Full Text PDFNitrate contamination of ground and surface waters causes environmental pollution and human health problems in many parts of the world. This study tests the nitrate removal efficiencies of two ion exchange resins (Dowex 21K XLT and iron-modified Dowex 21K XLT (Dowex-Fe)) and two chemically modified bio-adsorbents (amine-grafted corn cob (AG corn cob) and amine-grafted coconut copra (AG coconut copra)) using a dynamic adsorption treatment system. A submerged membrane (microfiltration) adsorption hybrid system (SMAHS) was used for the continuous removal of nitrate with a minimal amount of adsorbents.
View Article and Find Full Text PDFPermeable pavement systems (PPS) are a widely-used treatment measure in sustainable stormwater management and groundwater recharge. However, PPS are not very efficient in removing heavy metals from stormwater. A pilot scale study using zeolite or basalt as bed material in PPS removed 41-72%, 67-74%, 38-43%, 61-72%, 63-73% of Cd, Cu, Ni, Pb, and Zn, respectively, from synthetic stormwater (pH 6.
View Article and Find Full Text PDFAdsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges.
View Article and Find Full Text PDFDischarging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P) resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.
View Article and Find Full Text PDFHeavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals.
View Article and Find Full Text PDFSixteen polycyclic aromatic hydrocarbons (PAHs) considered as priority environmental pollutants were analysed in surface natural soils (NS), road-deposited sediments (RDS), and water sediments (WS) at Kogarah in Sydney, Australia. Comparisons were made of their concentration distributions, likely sources and potential toxicities. The concentrations (mg/kg) in NS, RDS, and WS ranged from 0.
View Article and Find Full Text PDF