The RING-type E3 ligases play a significant role in stress signaling, primarily through post-translational regulation. Ubiquitination is a crucial post-translational modification that regulates the turnover and activity of proteins. The overexpression of AlRabring7, RING-HC E3 Ub ligase in tobacco provides insights into the regulation of salinity and ABA signaling in transgenic tobacco.
View Article and Find Full Text PDFUnlabelled: Seaweed extracts have enormous potential as bio-stimulants and demonstrated increased growth and yield in different crops. The presence of physiologically active component stimulate plant stress signaling pathways, enhances growth and productivity, as well as serve as plant defense agents. The seaweed extracts can reduce the use of chemicals that harm the environment for disease management.
View Article and Find Full Text PDFUnlabelled: The charcoal-rot caused by is one of the major disease in many economically important crop plants including tomato. The molecular responses of the host plant against the are poorly stated. In the present study, for the first time the molecular insight of tomato- interaction and extract (SE) toward managing disease through RNA-seq approach is established.
View Article and Find Full Text PDFJatropha, a popular biodiesel crop, suffers severe losses due to (JLCuGV) infection in Gujarat (India). Metabolite profiling can help to understand the plant's innate immune response to geminivirus infection. Our study aims to compare metabolic profiles of an infected and healthy plant to unravel the changes in biochemical pathways on geminivirus infection in Jatropha.
View Article and Find Full Text PDFThe fruit nutrigenomics is an interesting and important research area towards nutrition enhancement. The phytic acid is one of the major antinutrient compound, present in seeded fruits and crops. It hinders the absorption of iron (Fe), zinc (Zn), magnesium (Mg), potassium (K) and calcium (Ca), causing mineral deficiencies.
View Article and Find Full Text PDFGlycophytic plants are susceptible to salinity and their growth is hampered in more than 40 mM of salt. Salinity not only affects crop yield but also limits available land for farming by decreasing its fertility. Presence of distinct traits in response to environmental conditions might result in evolutionary adaptations.
View Article and Find Full Text PDFHKT subfamily II functions as Na- K co-transporter and prevents plants from salinity stress. A 760 bp promoter region of AlHKT2;1 was isolated, sequenced and cloned. The full length promoter D1, has many cis-regulatory elements like MYB, MBS, W box, ABRE etc.
View Article and Find Full Text PDFThe plants endomembrane system of the cellular compartments with its complex membrane trafficking network facilitates transport of macromolecules. The endomembrane dynamics are essential for maintaining basic and specific cellular functions including adaptation to the extracellular environment. The plant vacuole serves as a reservoir for nutrients and toxic metabolites and performs detoxification processes to maintain cellular homeostasis.
View Article and Find Full Text PDFThe leaf curl disease of Jatropha caused by geminiviruses results in heavy economic losses. In the present study, we report the identification of a new strain of a Jatropha leaf curl Gujarat virus (JLCuGV), which encodes six ORFs with each one having RNA silencing suppressor activity. Therefore, three artificial microRNAs (amiRNAs; C1/C4, C2/C3 and V1/V2) were designed employing overlapping regions, each targeting two ORFs of JLCuGV genomic DNA and transformed in tobacco.
View Article and Find Full Text PDFWRKY proteins are plant-specific transcription factors (TFs), and form one of the largest families and are involved in plant development and responses to stress. The salicylic acid (SA) responsive WRKY family auto or cross-regulate the defence stress signalling pathways. In this study, we functionally validated the role of gene from biofuel crop towards improving resistance to tobacco transgenic against charcoal rot causing necrotrophic fungus, .
View Article and Find Full Text PDFThe maintenance of ROS homeostasis, membrane biogenesis and recycling of molecules are common stress responses involving specific and complex regulatory network. Ubiquitination is an important and common mechanism which facilitates environmental adaptation in eukaryotes. In the present study we have cloned the AlRabring7, an E3-Ub-ligase, previously identified as AlRab7 interacting partner.
View Article and Find Full Text PDFSalinity is one of the major factors negatively affecting crop productivity. WRKY transcription factors (TFs) are involved in salicylic acid (SA) mediated cellular reactive oxygen species homeostasis in response to different stresses, including salinity. Therefore, the effect of NaCl, NaCl + SA and SA treatments on different photosynthesis-related parameters and wax metabolites were studied in the Jatropha curcas WRKY (JcWRKY) overexpressing tobacco lines.
View Article and Find Full Text PDFPlants encounter a variety of adverse environmental conditions, such as high salinity, drought, extreme heat/cold and heavy metals contamination (abiotic stress) or attack of various pathogens (biotic stress). These detrimental environmental factors enhanced the ROS production such as singlet oxygen (O), superoxide (O ), hydrogen peroxide (HO) and hydroxyl radicals (OH). ROS are highly reactive and directly target several cellular molecules and metabolites, which lead to severe cellular dysfunction.
View Article and Find Full Text PDFThe plants being sessile cannot escape from the adverse environmental stresses, hence get negatively affected in terms of their growth and yield. Transcriptional control simultaneously regulate different cellular processes, minimizing the deleterious effects of these stresses. The salicylic acid (SA)-inducible WRKY family of transcription factors auto or crossregulate the stress signaling in response to abiotic and biotic stresses, facilitating enhanced stress tolerance.
View Article and Find Full Text PDFPlants require different inorganic minerals in an appropriate amount for growth; however, imbalance can limit growth and productivity. Heavy metal accumulation causes toxicity and generates signalling crosstalk with reactive oxygen species (ROS), phytohormones, genes and transcription factors (TFs). The MYB (myeloblastoma) TFs participate in plant processes such as metabolism, development, cell fate, hormone pathways and responses to stresses.
View Article and Find Full Text PDFNAC proteins are a large family of plant-specific transcription factors which regulate both ABA-dependent and -independent gene expression. These transcription factors participate in biotic and abiotic stress-response through intricate regulation at transcriptional, post-transcriptional and post-translational levels. In the present study, AlNAC4 transcription factor was isolated from a salt excreting halophyte .
View Article and Find Full Text PDFPlants possess an innate immune system comprising of a complex network of closely regulated defense responses involving differential gene expression mediated by transcription factors (TFs). The WRKYs comprise of an important plant-specific TF family, which is involved in regulation of biotic and abiotic defenses. The overexpression of JcWRKY resulted in improved resistance in transgenic tobacco against Macrophomina phaseolina.
View Article and Find Full Text PDFPlants are the primary producers of food for human being. Their intracellular environment alternation is influenced by abiotic stress factors such as drought, heat and soil salinity. Aeluropus lagopoides is a strong halophyte that grows with ease under high saline muddy banks of creeks of Gujarat, India.
View Article and Find Full Text PDFDehydration responsive element binding (DREB) factors or CRT element binding factors (CBFs) are members of the AP2/ERF family, which comprises a large number of stress-responsive regulatory genes. This review traverses almost two decades of research, from the discovery of DREB/CBF factors to their optimization for application in plant biotechnology. In this review, we describe (i) the discovery, classification, structure, and evolution of DREB genes and proteins; (ii) induction of DREB genes by abiotic stresses and involvement of their products in stress responses; (iii) protein structure and DNA binding selectivity of different groups of DREB proteins; (iv) post-transcriptional and post-translational mechanisms of DREB transcription factor (TF) regulation; and (v) physical and/or functional interaction of DREB TFs with other proteins during plant stress responses.
View Article and Find Full Text PDFPlants, being sessile, have developed intricate signaling network to specifically respond to the diverse environmental stress. The plant-specific WRKY TFs form one of the largest TF family and are involved in diverse plant processes, involving growth, development and stress signaling through auto and cross regulation with different genes and TFs. Here, we report the functional characterization of a salicylic acid -inducible JcWRKY TF.
View Article and Find Full Text PDFPlants in ecosystems are simultaneously exposed to abiotic and biotic stresses, which restrict plant growth and development. The complex responses to these stresses are largely regulated by plant hormones, which in turn, orchestrate the different biochemical and molecular pathways to maneuver stress tolerance. The PR-10 protein family is reported to be involved in defense regulation, stress response and plant growth and development.
View Article and Find Full Text PDFSbMYB15, R2R3-type MYB was induced by the different stresses, and conferred stress tolerance in transgenic tobacco by regulating the expression of stress-responsive genes. MYBs are the master regulators of various metabolic processes and stress responses in plants. In this study, we functionally characterised a R2R3-type SbMYB15 transcription factor (TF) from the extreme halophyte Salicornia brachiata.
View Article and Find Full Text PDFSalinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.
View Article and Find Full Text PDFAbiotic stresses like drought, salinity and extreme temperature significantly affect crop productivity. Plants respond at molecular, cellular and physiological levels for management of stress tolerance. Functional and regulatory genes play a major role in controlling these abiotic stresses through an intricate network of transcriptional machinery.
View Article and Find Full Text PDFThe high-affinity potassium transporters (HKT) are highly important for stress tolerance in plants as they uniquely maintain K(+)/Na(+) ratio for their survival and growth. In this study a novel HKT gene AlHKT2;1 was isolated and characterized from salt secreting halophyte, Aeluropus lagopoides. The AlHKT2;1 cDNA comprised of an open reading frame of 1,581 bp, encoding a protein of 526 amino acid residues.
View Article and Find Full Text PDF