Publications by authors named "Parinaz Kazemi"

To identify novel genes responsible for recurrent hydatidiform moles (HMs), we performed exome sequencing on 75 unrelated patients who were negative for mutations in the known genes. We identified biallelic deleterious variants in 6 genes, FOXL2, MAJIN, KASH5, SYCP2, MEIOB, and HFM1, in patients with androgenetic HMs, including a familial case of 3 affected members. Five of these genes are essential for meiosis I, and their deficiencies lead to premature ovarian insufficiency.

View Article and Find Full Text PDF

Pregnancy success is dependent on the establishment of maternal tolerance during the preimplantation period. The immunosuppressive function of regulatory T cells is critical to limit inflammation arising from implantation of the semi-allogeneic blastocyst. Insufficient maternal immune adaptations to pregnancy have been frequently associated with cases of female infertility and recurrent implantation failure.

View Article and Find Full Text PDF

Meiotic homologous recombination during fetal development dictates proper chromosome segregation in adult mammalian oocytes. Successful homologous synapsis and recombination during Meiotic Prophase I (MPI) depends on telomere-led chromosome movement along the nuclear envelope. In mice, all chromosomes are acrocentric, while other mammalian species carry a mixture of acrocentric and metacentric chromosomes.

View Article and Find Full Text PDF

Limited heating and cooling rates have long been recognized as bottlenecks in improving embryo cryopreservation. As a result, efforts to achieve higher heat transfer rates gave rise to milestones like open cryodevices and minimal media loading. A crucial but commonly ignored variable is heat conduction by cryosolutions.

View Article and Find Full Text PDF

Embryo vitrification is a fundamental practice in assisted reproduction and fertility preservation. A key step of this process is replacing the internal water with cryoprotectants (CPAs) by transferring embryos from an isotonic to a hypertonic solution of CPAs. However, this applies an abrupt osmotic shock to embryos, resulting in molecular damages that have long been a source of concern.

View Article and Find Full Text PDF

In mammalian oocytes, proper chromosome segregation at the first meiotic division is dictated by the presence and site of homologous chromosome recombination, which takes place in fetal life. Our current understanding of how homologous chromosomes find each other and initiate synapsis, which is prerequisite for homologous recombination, is limited. It is known that chromosome telomeres are anchored into the nuclear envelope (NE) at the early meiotic prophase I (MPI) and move along NE to facilitate homologous chromosome search and pairing.

View Article and Find Full Text PDF

Embryo cryopreservation is a common practice in reproductive biology and infertility treatments. Despite major improvements over years, the cryoprotectant solutions are still a major source of concern, mostly due to their chemical toxicity and suboptimal protection against cryoinjuries. In this work, we introduced natural honey as a non-permeating cryoprotectant to replace traditionally used sucrose in embryo vitrification.

View Article and Find Full Text PDF

Background: While mammalian embryos can adapt to their environments, their sensitivity overshadows their adaptability in suboptimal conditions. Therefore, the environment in which the gametes are fertilized or to which the embryo is exposed can greatly affect the quality of the embryo and consequently its implantation potential.

Objectives: Since providing an optimal culture condition needs a deep understanding of the environmental effects, and regarding the fact that normal morphology fails to be a reliable indicator of natural embryo development, the current study aimed at comparing - and -derived blastocysts at the molecular level.

View Article and Find Full Text PDF

There is a large body of animal experimental data about assisted reproductive techniques that could be applied to improve clinical outcomes. The great part of this information was obtained from research on in vivo-derived embryos. But whether these results are always similar with those we expect from embryos having in vitro origin in the clinical cases is a critical question.

View Article and Find Full Text PDF

Low oxygen concentrations during in vitro embryo development not only improving the embryo quality but also can lead to successful implantation. Yet, there is no investigation at the molecular level to indicate the association between increased implantation rate and invasive ability of blastocyst and its inner cell mass quality with in vitro culture under a hypoxic condition. Therefore, the present study was designed to investigate blastocyst formation, total cell number, hatching and implantation rates.

View Article and Find Full Text PDF

Artificial collapse of the blastocoel cavity before vitrification can improve the quality of warmed embryos, yet how reduction of blastocoel fluid impacts formation of the blastocyst cell lineages is not clear. The present study assessed the effect of pre-vitrification blastocoel fluid reduction on the survival, hatching rate, and the expression of genes related to apoptosis (Tp53), pluripotency (Pou5f1, Nanog), and differentiation (Cdx2, Eomes, Gata6) in mouse blastocysts. In vivo-produced blastocysts were randomly divided into three groups: The first group was vitrified and warmed; the second group underwent artificial collapse of the blastocoel cavity prior to vitrification and warming; the third group served as the control, in which neither vitrification or artificial collapse was performed.

View Article and Find Full Text PDF