Machine learning is playing a crucial role in optimizing material synthesis, particularly in scenarios where several parameters related to growth exhibit different and significant outcomes. An example of such complexity is the growth of atomically thin semiconductors through chemical vapor deposition (CVD), where multiple parameters can influence the thermodynamics and reaction kinetics involved in the synthesis. Herein, we performed a set of orthogonal experiments, varying the key parameters such as temperature, carries gas flux and precursor position to identify the optimal conditions for maximizing covered area and the size of rhenium disulfide (ReS) crystals.
View Article and Find Full Text PDFThis study investigates vertically stacked CVD grown ReS/MoS unipolar heterostructure device as Field Effect Transistor (FET) device wherein ReS on top acts as drain and MoS at bottom acts as source. The electrical measurements of ReS/MoS FET device were carried out and variation in Ids (drain current) Vs Vds (drain voltage) for different Vgs (gate voltage) revealing the n-type device characteristics. Furthermore, the threshold voltage was calculated at the gate bias voltage corresponding to maximum transconductance (g) value which is ~ 12 V.
View Article and Find Full Text PDFSeveral studies on semiconductor material-based single-band, high-performance photosensitive, and chemically stable photodetectors are available; however, the lack of broad spectral response, device flexibility, and biodegradability prevents them from being used in wearable and flexible electronics. Apart from that, the selection of the device fabrication technique is a very crucial factor nowadays in terms of equipment utilization and environmental friendliness. This report presents a study demonstrating a straightforward solvent- and equipment-free handprint technique for the fabrication of WSe-TiCT flexible, biodegradable, robust, and broadband (Vis-NIR) photodetectors.
View Article and Find Full Text PDFThis study demonstrates the effect of nitrogen doping on the surface state densities (Nss) of monolayer MoS2 and its effect on the responsivity and the response time of the photodetector. Our experimental results shows that by doping monolayer MoS2 by nitrogen, the surface state (Nss) increases thereby increasing responsivity. The mathematical model included in the paper supports the relation of photocurrent gain and its dependency on trap level which states that the increasing the trap density increases the photocurrent gain and the same is observed experimentally.
View Article and Find Full Text PDFThe remarkable properties of two-dimensional (2D) materials have led to significant advancements in photodetection and optoelectronics research. Currently, there are many successful methods that are employed to improve the responsivity of photodetectors, but the limited spectral range of the device remains a limitation. This work demonstrates the development of a mixed-dimensional (2D/0D) hybrid photodetector device fabricated using chemical vapor deposition (CVD)-grown monolayer ReS and solution-processed MoS quantum dots (QDs).
View Article and Find Full Text PDFUtilizing alternative energy sources to fossil fuels has remained a significant issue for humanity. In this context, efficient earth-abundant bifunctional catalysts for water splitting and energy storage technologies like hybrid supercapacitors have become essential for achieving a sustainable future. Herein, CoCr-LDH@VNiS was synthesized by hydrothermal synthesis.
View Article and Find Full Text PDFAtomically thin two-dimensional (2D) materials have gained significant attention from the research community in the fabrication of high-performance optoelectronic devices. Even though there are various techniques to improve the responsivity of the photodetector, the key factor limiting the performance of the photodetectors is constrained photodetection spectral range in the electromagnetic spectrum. In this work, a mixed-dimensional 0D/2D SnS-QDs/monolayer MoS hybrid is fabricated for high-performance and broadband (UV-visible-near-infrared (NIR)) photodetector.
View Article and Find Full Text PDFRespiration rate is a vital parameter which is useful for the earlier identification of diseases. In this context, various types of devices have been fabricated and developed to monitor different breath rates. However, the disposability and biocompatibility of such sensors and the poor classification of different breath rates from sensor data are significant issues in medical services.
View Article and Find Full Text PDFThis work demonstrates the fabrication of tellurium-nanowires (Te-NWs)/paper based device encapsulated using laser assisted mircopyramid patterned polydimethylsiloxane (PDMS) films. Although there are multiple reports published on 1D Te, most of them are limited to establishing its properties and studying its behavior as a sensor and research on the utilization of Te-NWs for physical sensors remain unexplored. Further, reports on p-type photodetectors also remain scarce.
View Article and Find Full Text PDFElectronic skin has attracted a lot of interest in recent years due to its ability to mimic human skin and also its excellent conformability. Even though there are reports on electronic skin, the major issue that still needs to be resolved is achieving multifunctional sensing at the same time as ultra-high sensitivity. Hence, there is an immediate requirement to develop inexpensive, highly sensitive, and superior performance piezoresistive multifunctional sensors that mimic skin.
View Article and Find Full Text PDFThe monitoring of respiratory disorders requires breath sensors that are fast, robust, and convenient to use and can function under real time conditions. A MOF based flexible sensor is reported for the first time for breath sensing applications. The properties of a highly porous HKUST-1 MOF and a conducting MoS2 material have been combined to fabricate an electronic sensor on a flexible paper support for studying sleep apnea problems.
View Article and Find Full Text PDFWe report on the low cost and low temperature chemical synthesis of p-type nickel oxide (NiO) and n-type reduced graphene oxide (rGO) and their integration onto ITO/glass substrate to form p-NiO/n-rGO heterojunction for possible self-powered ultraviolet (UV) photodetector applications. Different spectroscopies and microscopes were employed to study their microstructural and surface properties. Whereas, the electrical characterizations have been performed on the devices to ascertain the responsivity, detectivity, external quantum efficiency and temporal responses under dark and UV illumination.
View Article and Find Full Text PDFThere is an urgent need to develop low cost electrochemical sensors wherein the sensor can be disposed after recording data, thereby eliminating the issue of inaccuracy arising from repeated sensing measurements, which plagues most conventional electrochemical sensors. This work is the first demonstration of a NiSe based disposable, one time use electrochemical glucose sensor in bio-mimicking real samples wherein NiSe was hydrothermally grown NiSe on a biodegradable cellulose paper. Both physicochemical (x-ray diffraction, x-ray photoelectron spectroscopy, field emission scanning electron microscope) and electrochemical (impedance spectroscopy and cyclic voltammetry (CV)) characterization techniques confirmed the growth and presence of NiSe on a cellulose paper.
View Article and Find Full Text PDFEven though 2D ZnO has been utilized for enhanced self-powered sensing by strain modulation due to its piezoelectric property, study on utilizing the pyroelectric property of ZnO remains unexplored. The piezoelectric property of 2D ZnO works on mechanical strain, which disrupts the structure of ZnO leading to the failure of the device. For a pyroelectric nanogenerator, the temperature difference can be triggered by an external light source, which does not disrupt the ZnO structure and also avoids the need for physical bending/pressing, as in the case of a piezoelectric nanogenerator.
View Article and Find Full Text PDFMultifunctional sensors responding to different chemical stimuli fabricated using functional nanomaterials still remain a challenge because of the usage of the same sensor multiple times for different sensing applications and unreliable front-end processing of the sensing data. This challenge is intensified by the lack of suitable techniques for fabricating disposable sensors, which can be integrated into smartphones with a dedicated application developed for each sensing application. A novel MoS/CuS hybrid grown on disposable cellulose paper by the hydrothermal method is reported for its utilization in sensing humidity, temperature, breath, and ethanol adulteration, wherein the data can be wirelessly transmitted to a smartphone with the dedicated application module for each sensing application.
View Article and Find Full Text PDFElectronic structure and carrier behavior in semiconductor junctions can be effectively modulated on the application of strain. This work represents the first demonstration of a large-area, flexible, paper-based graphene-molybdenum disulfide (Gr/MoS) broadband photodetector using a low-cost solution-processed hydrothermal method and enhancement in photodetection through strain modulation by assembling the device on polydimethylsiloxane. Optimization, in terms of process parameters, was carried out to obtain trilayer MoS over Gr-cellulose paper.
View Article and Find Full Text PDFThis paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions.
View Article and Find Full Text PDF