Adv Drug Deliv Rev
September 2021
Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy.
View Article and Find Full Text PDFBioprinting of most cell-laden hydrogel scaffolds with the required structural integrity, mechanical modulus, cell adhesion, cell compatibility, and chondrogenic differentiation are still significant issues that affect the application of bioinks in cartilage tissue engineering. This study focuses on constructing printable bioinks by combining adipose-derived stem cells (ADSCs), hyaluronic acid (HA)-based hydrogels and analyzing their ability to induce chondrogenesis using 3D bioprinting technology. First, biotinylated hyaluronic acid was synthesized via an adipic acid dihydrazide (ADH) linker with amide bond formation to form HA-biotin (HAB).
View Article and Find Full Text PDFWith the emergence of multidrug resistance (MDR) bacteria, wound infection continues to be a challenging problem and represents a considerable healthcare burden. This study aims to evaluate the applicability of a phage loaded thermosensitive hydrogel in managing wound infections caused by MDR Acinetobacter baumannii, using IME-AB2 phage and MDR-AB2 as the model phage and bacteria, respectively. Excellent storage stability of the IME-AB2 phage in a ~18 wt% Poloxamer 407 (P407) hydrogel solution was first demonstrated with negligible titer loss (~0.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2020
Aptamers are small, functional single-stranded DNA or RNA oligonucleotides that bind to their targets with high affinity and specificity. Experimentally, aptamers are selected by the systematic evolution of ligands by exponential enrichment (SELEX) method. Here, we have used rational drug designing and bioinformatics methods to design the aptamers, which involves three different steps.
View Article and Find Full Text PDFSurgery is considered to be the favored approach for the treatment of most solid tumor malignancies. The quality of life among cancer patients has significantly improved due to advancements in instrumentation and surgical techniques; however, the recurrence of tumors and metastasis after operation remains challenging and results in a decreased quality of life and an increase in the mortality rate. Therefore, there is a need to explore applicable approaches to eradicate the circulating tumor cells and any residual tumor at the surgical site to inhibit the recurrence of the tumor and reduce the threat of distant metastasis.
View Article and Find Full Text PDFWith the advancement of technology, drug delivery systems and molecules with more complex architecture are developed. As a result, the drug absorption and disposition processes after administration of these drug delivery systems and engineered molecules become exceedingly complex. As the pharmacokinetic and pharmacodynamic (PK-PD) modeling allows for the separation of the drug-, carrier- and pharmacological system-specific parameters, it has been widely used to improve understanding of the behavior of these complex delivery systems and help their development.
View Article and Find Full Text PDFFor cancer therapy, the usefulness of mesoporous silica nanoparticles (MPSNPs) has been widely discussed, likely due to its inorganic nature and excellent structural features. The MPSNPs-based chemotherapeutics have been promisingly delivered to their target sites that help to minimize side effects and improve therapeutic effectiveness. A wide array of studies have been conducted to functionalize drug-loaded MPSNPs using targeting ligands and stimuli-sensitive substances.
View Article and Find Full Text PDFTyrosinase plays an important role in melanin biosynthesis and protects skin against ultraviolet radiations. Functional deficiency of tyrosinase results in serious dermatological diseases. Tyrosinase also participates in neuromelanin formation in the human brain, which leads to neurodegeneration resulting in Parkinson's disease.
View Article and Find Full Text PDFHollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for drug delivery. However, a facile method to synthesize HMSNs has hardly been reported so far. The primary objective of our current study was to develop HMSNs using a simple, quick, and inexpensive method and evaluate their ability to enhance solubility, dissolution rate, and bioavailability of poorly water-soluble model BSC type II drug Carvedilol.
View Article and Find Full Text PDFThe 'repurposed drug,' disulfiram (DSF), is an inexpensive FDA-approved anti-alcoholism drug with multi-target anti-cancer effect. However, the use of DSF in clinical settings remains limited due to its high instability in blood. In the present study, we created nanostructured lipid carriers (NLC) encapsulated DSF modified with d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E-TPGS).
View Article and Find Full Text PDFCarvedilol (CAR) in its pure state has low aqueous solubility and extremely poor bioavailability which largely limit its clinical application. The aim of the study is to improve the dissolution rate and the bioavailability of CAR via preparing nanosuspensions with different stabilizers. Antisolvent precipitation-ultrasonication technique was used here.
View Article and Find Full Text PDFSpecific and effective delivery of DNA vaccines into dendritic cells (DCs) to express antigens is a precondition for induction of immune responses. Construction of a new DNA vaccine delivery system with the ability of programmed gene transfection may achieve this objective. In this study, we successfully integrated dendritic lipopeptide, charge-reversible polymer, and APC-targeted material into DNA vaccine delivery system through layer-by-layer (LBL) assembly.
View Article and Find Full Text PDF