Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.
View Article and Find Full Text PDFIt is with great enthusiasm that we introduce the third edition of the "Virus-Host Interaction" series, a collection that epitomizes the ever-evolving landscape of virology [...
View Article and Find Full Text PDFAs rightly stated by the author Mira Grant in her novel Countdown, "There is nothing so patient, in this world or any other, as a virus searching for a host" [...
View Article and Find Full Text PDFmicroRNAs are a class of small, single-stranded, noncoding RNAs that regulate gene expression. They can be significantly dysregulated upon exposure to any infection, serving as important biomarkers and therapeutic targets. Numerous human DNA viruses, along with several herpesviruses, have been found to encode and express functional viral microRNAs known as vmiRNAs, which can play a vital role in host-pathogen interactions by controlling the viral life cycle and altering host biological pathways.
View Article and Find Full Text PDFDengue virus (DENV) represents the most common human arboviral infection, yet its cellular entry mechanism remains unclear. The multi-subunit endoplasmic reticulum membrane complex (EMC) supports DENV infection, in part, by assisting the biosynthesis of viral proteins critical for downstream replication steps. Intriguingly, the EMC has also been shown to act at an earlier step prior to viral protein biogenesis, although this event is not well-defined.
View Article and Find Full Text PDFAs rightly put by Nobel Laureate Joshua Lederberg, "the single biggest threat to man's continued dominance on the planet is the Virus" [...
View Article and Find Full Text PDFViruses rearrange host membranes to support different entry steps. Polyomavirus simian virus 40 (SV40) reorganizes the endoplasmic reticulum (ER) membrane to generate focus structures that enable virus ER-to-cytosol escape, a decisive infection step. The molecular architecture of the ER exit site that might illuminate why it is ideally suited for membrane penetration is unknown.
View Article and Find Full Text PDFDengue is a mosquito-borne viral disease (arboviral) caused by the Dengue virus. It is one of the prominent public health problems in tropical and subtropical regions with no effective vaccines. Every year around 400 million people get infected by the Dengue virus, with a mortality rate of about 20% among the patients with severe dengue.
View Article and Find Full Text PDFBiochem Soc Trans
October 2020
The endoplasmic reticulum (ER), with its expansive membranous system and a vast network of chaperones, enzymes, sensors, and ion channels, orchestrates diverse cellular functions, ranging from protein synthesis, folding, secretion, and degradation to lipid biogenesis and calcium homeostasis. Strikingly, some of the functions of the ER are exploited by viruses to promote their life cycles. During entry, viruses must penetrate a host membrane and reach an intracellular destination to express and replicate their genomes.
View Article and Find Full Text PDFVirus exploits host cellular machinery to replicate and form new viral progeny and endoplasmic reticulum (ER) plays central role in the interplay between virus and host cell. Here I will discuss how cellular functions of ER being utilized by viruses from different families during different stages of pathogenesis. Flow of knowledge related to this area of research based on interdisciplinary approach, using biochemical and cell biological assays coupled with advanced microscopy strategies, is pushing our understanding of the virus-ER interaction during infection to the next level.
View Article and Find Full Text PDFAlthough viruses must navigate the complex host endomembrane system to infect cells, the strategies used to achieve this is unclear. During entry, polyomavirus SV40 is sorted from the late endosome (LE) to the endoplasmic reticulum (ER) to cause infection, yet how this is accomplished remains enigmatic. Here we find that EMC4 and EMC7, two ER membrane protein complex (EMC) subunits, support SV40 infection by promoting LE-to-ER targeting of the virus.
View Article and Find Full Text PDFMembrane penetration by nonenveloped viruses remains enigmatic. In the case of the nonenveloped polyomavirus simian virus 40 (SV40), the virus penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol and then traffics to the nucleus to cause infection. We previously demonstrated that the cytosolic Hsc70-SGTA-Hsp105 complex is tethered to the ER membrane, where Hsp105 and SGTA facilitate the extraction of SV40 from the ER and transport of the virus into the cytosol.
View Article and Find Full Text PDFDestabilization of a non-enveloped virus generates a membrane transport-competent viral particle. Here we probe polyomavirus SV40 endoplasmic reticulum (ER)-to-cytosol membrane transport, a decisive infection step where destabilization initiates this non-enveloped virus for membrane penetration. We find that a member of the ER membrane protein complex (EMC) called EMC1 promotes SV40 ER membrane transport and infection.
View Article and Find Full Text PDFViruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co-opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress.
View Article and Find Full Text PDFMammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step.
View Article and Find Full Text PDFUnlabelled: The nonenveloped simian virus 40 (SV40) hijacks the three endoplasmic reticulum (ER) membrane-bound J proteins B12, B14, and C18 to escape from the ER into the cytosol en route to successful infection. How C18 controls SV40 ER-to-cytosol membrane penetration is the least understood of these processes. We previously found that SV40 triggers B12 and B14 to reorganize into discrete puncta in the ER membrane called foci, structures postulated to represent the cytosol entry site (C.
View Article and Find Full Text PDFRotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell.
View Article and Find Full Text PDFTNF receptor associated factor 2 (TRAF2) plays a very important role in cellular innate immune as well as inflammatory responses. Previous studies have reported TRAF2 mediated regulation of TNF and Interferon (IFN) induced canonical and non-canonical activation of NFκB. In this study, we show that rotavirus NSP1 targets TRAF2 to regulate IFN induced non-canonical NFκB activation.
View Article and Find Full Text PDFOur previous study had reported on the interaction of rotavirus NSP1 with cellular phosphoinositide 3-kinase (PI3K) during activation of the PI3K pathway (P. Bagchi et al., J.
View Article and Find Full Text PDF