Publications by authors named "Parijat Senapati"

Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers.

View Article and Find Full Text PDF

Background: Epigenetic changes link medical, social, and environmental factors with cardiovascular and kidney disease and, more recently, with cancer. The mechanistic link between metabolic health and epigenetic changes is only starting to be investigated. In our in vitro and in vivo studies, we performed a broad analysis of the link between hyperinsulinemia and chromatin acetylation; our top "hit" was chromatin opening at H3K9ac.

View Article and Find Full Text PDF

The DNA methyltransferase activity of DNMT1 is vital for genomic maintenance of DNA methylation. We report here that DNMT1 function is regulated by -GlcNAcylation, a protein modification that is sensitive to glucose levels, and that elevated -GlcNAcylation of DNMT1 from high glucose environment leads to alterations to the epigenome. Using mass spectrometry and complementary alanine mutation experiments, we identified S878 as the major residue that is -GlcNAcylated on human DNMT1.

View Article and Find Full Text PDF

A primary function of DNA methylation in mammalian genomes is to repress transposable elements (TEs). The widespread methylation loss that is commonly observed in cancer cells results in the loss of epigenetic repression of TEs. The aging process is similarly characterized by changes to the methylome.

View Article and Find Full Text PDF

The mechanisms that specify and stabilize cell subtypes remain poorly understood. Here, we identify two major subtypes of pancreatic β cells based on histone mark heterogeneity (β and β). β cells exhibit ∼4-fold higher levels of H3K27me3, distinct chromatin organization and compaction, and a specific transcriptional pattern.

View Article and Find Full Text PDF

Lysine acetylation is the second most well-studied post-translational modification after phosphorylation. While phosphorylation regulates signaling cascades, one of the most significant roles of acetylation is regulation of chromatin structure. Acetyl-coenzyme A (acetyl-CoA) serves as the acetyl group donor for acetylation reactions mediated by lysine acetyltransferases (KATs).

View Article and Find Full Text PDF

Nucleophosmin (NPM1) is a multifunctional histone chaperone that can activate acetylation-dependent transcription from chromatin templates . p300-mediated acetylation of NPM1 has been shown to further enhance its transcription activation potential. Acetylated and total NPM1 pools are increased in oral squamous cell carcinoma.

View Article and Find Full Text PDF

A robust breast cancer prevention strategy requires risk assessment biomarkers for early detection. We show that expression of , a transcription factor critical for normal mammary development, is downregulated in mammary luminal epithelia with age. DNA methylation of the promoter is negatively correlated with expression in an age-dependent manner.

View Article and Find Full Text PDF

Tumour cells adapt to nutrient deprivation in vivo, yet strategies targeting the nutrient poor microenvironment remain unexplored. In melanoma, tumour cells often experience low glutamine levels, which promote cell dedifferentiation. Here, we show that dietary glutamine supplementation significantly inhibits melanoma tumour growth, prolongs survival in a transgenic melanoma mouse model, and increases sensitivity to a BRAF inhibitor.

View Article and Find Full Text PDF

Background: Hyperinsulinemia, the presence of excess insulin relative to glucose in the blood, is considered to be a poor prognostic indicator for patients with triple-negative breast cancer (TNBC). mTOR, a downstream effector of insulin, enhances mitochondrial biogenesis and activity, thereby increasing acetyl-CoA precursors. Increased acetyl-CoA can, in turn, be utilized by nuclear acetyltransferases for histone acetylation, a critical feature of genome regulation.

View Article and Find Full Text PDF

Rationale: AngII (angiotensin II)-mediated vascular smooth muscle cell (VSMC) dysfunction plays a major role in hypertension. Long noncoding RNAs have elicited much interest, but their molecular roles in AngII actions and hypertension are unclear.

Objective: To investigate the regulation and functions of a novel long noncoding RNA growth factor- and proinflammatory cytokine-induced vascular cell-expressed RNA ( Giver), in AngII-mediated VSMC dysfunction.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies key transcription factors, particularly c-fos and mutant p53 (R175H), that regulate NPM1 expression, showcasing their involvement in tumor proliferation.
  • * Findings indicate that c-fos and mutant p53 may work together to enhance NPM1 levels in oral tumors, suggesting a potential link to cancer development and progression.
View Article and Find Full Text PDF

Objective- Macrophages play key roles in inflammation and diabetic vascular complications. Emerging evidence implicates long noncoding RNAs in inflammation, but their role in macrophage dysfunction associated with inflammatory diabetic complications is unclear and was therefore investigated in this study. Approach and Results- RNA-sequencing and real-time quantitative PCR demonstrated that a long noncoding RNA Dnm3os (dynamin 3 opposite strand) is upregulated in bone marrow-derived macrophages from type 2 diabetic db/db mice, diet-induced insulin-resistant mice, and diabetic ApoE mice, as well as in monocytes from type 2 diabetic patients relative to controls.

View Article and Find Full Text PDF

Background: p300 (KAT3B) lysine acetyltransferase activity is modulated under different physiological and pathological contexts through the induction of trans-autoacetylation. This phenomenon is mediated by several factors, mechanisms of which are not fully understood.

Methods: Through acetyltransferase assays using full-length, baculovirus-expressed KATs, the specificity of NPM1-mediated enhancement of p300 autoacetylation was tested.

View Article and Find Full Text PDF

Angiotensin II (AngII) promotes hypertension and atherosclerosis by activating growth-promoting and pro-inflammatory gene expression in vascular smooth muscle cells (VSMCs). Enhancers and super-enhancers (SEs) play critical roles in driving disease-associated gene expression. However, enhancers/SEs mediating VSMC dysfunction remain uncharacterized.

View Article and Find Full Text PDF

More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood.

View Article and Find Full Text PDF

Histone chaperones are histone interacting proteins that are involved in various stages of histone metabolism in the cell such as histone storage, transport, nucleosome assembly and disassembly. Histone assembly and disassembly are essential processes in certain DNA-templated phenomena such as replication, repair and transcription in eukaryotes. Since the first histone chaperone Nucleoplasmin was discovered in Xenopus, a plethora of histone chaperones have been identified, characterized and their functional significance elucidated in the last 35 years or so.

View Article and Find Full Text PDF

The functional association of NPM1 with Aurora kinases is well documented. Surprisingly, although NPM1 is a well characterized phosphoprotein, it is unknown whether it is a substrate of Aurora kinases. We have found that Aurora kinases A and B can phosphorylate NPM1 at a single serine residue, Ser125, in vitro and in vivo.

View Article and Find Full Text PDF

Mammalian centromeric histone H3 variant, CENP-A, is involved in maintaining the functional integrity and epigenetic inheritance of the centromere. CENP-A causes transcriptional repression of centromeric chromatin through an unknown mechanism. Here, we report that reconstituted CENP-A nucleosomes are amenable to ATP-dependent SWI/SNF-mediated remodelling but are less permissive to acetylation and acetylation-dependent in vitro chromatin transcription.

View Article and Find Full Text PDF

Background: Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been linked with proliferation, survival, invasion and angiogenesis of a variety of human cancer cells, including hepatocellular carcinoma (HCC). Thus, novel agents that can suppress STAT3 activation have potential for both prevention and treatment of HCC. Here we report, garcinol, a polyisoprenylated benzophenone, could suppress STAT3 activation in HCC cell lines and in xenografted tumor of HCC in nude mice model.

View Article and Find Full Text PDF

The condensed structure of chromatin limits access of cellular machinery towards template DNA. This in turn represses essential processes like transcription, replication, repair and recombination. The repression is alleviated by a variety of energy dependent processes, collectively known as "chromatin remodeling".

View Article and Find Full Text PDF

Nucleolin is a multifunctional protein that carries several post-translational modifications. We characterized nucleolin acetylation and developed antibodies specific to nucleolin K88 acetylation. Using this antibody we show that nucleolin is acetylated in vivo and is not localized in the nucleoli, but instead is distributed throughout the nucleoplasm.

View Article and Find Full Text PDF

Genome packaging is a universal phenomenon from prokaryotes to higher mammals. Genomic constituents and forces have however, travelled a long evolutionary route. Both DNA and protein elements constitute the genome and also aid in its dynamicity.

View Article and Find Full Text PDF

DNA damage in cells is often the result of constant genotoxic insult. Nevertheless, efficient DNA repair pathways are able to maintain genomic integrity. Over the past decade it has been revealed that it is not only kinase signalling pathways which play a central role in this process, but also the different post-translational modifications at lysine residues of histone (chromatin) and non-histone proteins.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) following integration hijacks host cell machineries where chromatinization of the viral genome regulates its latency, transcription, and replication. The cooperation among ATP-dependent chromatin remodeling factors, posttranslational modifying enzymes, and histone chaperones is well established during transcriptional activation in eukaryotes. However, the role of histone chaperones in transcription of the HIV promoter is poorly understood.

View Article and Find Full Text PDF