Although it is still in its infancy, synthetic biology has the capacity to face scientific and societal problems related to modern agriculture. Innovations in cloning toolkits and genetic parts allow increased precision over gene expression in planta. We review the vast spectrum of available technologies providing a practical list of toolkits that take advantage of combinatorial power to introduce/alter metabolic pathways.
View Article and Find Full Text PDFThe evolution of new traits in living organisms occurs via the processes of mutation, recombination, genetic drift, and selection. These processes that have resulted in the immense biological diversity on our planet are also being employed in metabolic engineering to optimize enzymes and pathways, create new-to-nature reactions, and synthesize complex natural products in heterologous systems. In this review, we discuss two evolution-aided strategies for metabolic engineering-directed evolution, which improves upon existing genetic templates using the evolutionary process, and combinatorial pathway reconstruction, which brings together genes evolved in different organisms into a single heterologous host.
View Article and Find Full Text PDFThe adaptation strategies of halophytic seaside barley to high salinity and osmotic stress were investigated by nuclear magnetic resonance imaging, as well as ionomic, metabolomic, and transcriptomic approaches. When compared with cultivated barley, seaside barley exhibited a better plant growth rate, higher relative plant water content, lower osmotic pressure, and sustained photosynthetic activity under high salinity, but not under osmotic stress. As seaside barley is capable of controlling Na and Cl concentrations in leaves at high salinity, the roots appear to play the central role in salinity adaptation, ensured by the development of thinner and likely lignified roots, as well as fine-tuning of membrane transport for effective management of restriction of ion entry and sequestration, accumulation of osmolytes, and minimization of energy costs.
View Article and Find Full Text PDFH-NMR is a very reproducible spectroscopic method and, therefore, a powerful tool for the metabolomic analysis of biological samples. However, due to the high complexity of natural samples, such as plant extracts, the evaluation of spectra is difficult because of signal overlap. The new NMR "Pure Shift" methods improve spectral resolution by suppressing homonuclear coupling and turning multiplets into singlets.
View Article and Find Full Text PDFL. commonly known as Saint John's Wort (SJW), is an important medicinal plant that has been used for more than 2000 years. Although produces several bioactive compounds, its importance is mainly linked to two molecules highly relevant for the pharmaceutical industry: the prenylated phloroglucinol hyperforin and the naphtodianthrone hypericin.
View Article and Find Full Text PDFHypericin is a molecule of high pharmaceutical importance that is synthesized and stored in dark glands (DGs) of St. John's Wort (Hypericum perforatum). Understanding which genes are involved in dark gland development and hypericin biosynthesis is important for the development of new Hypericum extracts that are highly demanded for medical applications.
View Article and Find Full Text PDFPlant-specific EFFECTORS OF TRANSCRIPTION (ET) are characterised by a variable number of highly conserved ET repeats, which are involved in zinc and DNA binding. In addition, ETs share a GIY-YIG domain, involved in DNA nicking activity. It was hypothesised that ETs might act as epigenetic regulators.
View Article and Find Full Text PDFUnlike sexual reproduction, apomixis encompasses a number of reproductive strategies, which permit maternal genome inheritance without genetic recombination and syngamy. The key biological features of apomixis are the circumvention of meiosis (i.e.
View Article and Find Full Text PDFThe formation of gametes is a prerequisite for any sexually reproducing organism in order to complete its life cycle. In plants, female gametes are formed in a multicellular tissue, the female gametophyte or embryo sac. Although the events leading to the formation of the female gametophyte have been morphologically characterized, the molecular control of embryo sac development remains elusive.
View Article and Find Full Text PDF