Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology characterized by a compositionally and mechanically altered extracellular matrix. Poor understanding of the origin of α-smooth muscle actin (α-SMA) expressing myofibroblasts has hindered curative therapies. Though proposed as a source of myofibroblasts in mammalian tissues, identification of microvascular pericytes (PC) as contributors to α-SMA-expressing populations in human IPF and the mechanisms driving this accumulation remain unexplored.
View Article and Find Full Text PDFObjective: Fibrocytes are collagen-producing leukocytes that accumulate in patients with systemic sclerosis (SSc; scleroderma)-related interstitial lung disease (ILD) via unknown mechanisms that have been associated with altered expression of neuroimmune proteins. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in SSc has not been explored.
View Article and Find Full Text PDFObjective: Neutrophil extravasation at post-capillary venules, consisting of EC, PC, and the shared ECM, increases following fibrotic remodeling in the lung, liver, and skin. The role of fibrotic pericyte-derived ECM in regulating EC activation and neutrophil recruitment remains unexplored.
Methods: To elucidate the role of human pericyte-derived ECM in EC activation, we characterized PC-derived ECM following transforming growth factor-β1, IL-1β, CCL2, or bleomycin activation, and examined surface adhesion molecule expression and neutrophil recruitment by EC cultured on PC-ECM.
Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective.
View Article and Find Full Text PDFDuring acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the subendothelial basement membrane and network of pericytes (PCs). Until recently, the contribution of the PC layer to neutrophil recruitment was largely ignored.
View Article and Find Full Text PDFMyostatin is a secreted TGF-beta family member that controls skeletal muscle growth. Humans, cattle, and dogs carrying natural loss-of-function mutations in the myostatin gene and myostatin knockout mice exhibit significant increases in skeletal muscle mass. Treatment of adult mice with antimyostatin antibodies also resulted in significant muscle mass increases.
View Article and Find Full Text PDF