We report laboratory aerosolization experiments and classical molecular dynamics (MD) simulations, with the objective of investigating the individual effects of the two Corexit surfactants Span 80 (nonionic) and dioctyl sodium sulfosuccinate (DOSS, ionic), on the aerosolization of oil spill matter to the atmosphere. Our simulation results show that Span 80, DOSS, and the oil alkanes n-pentadecane (C15) and n-triacontane (C30) exhibit deep free energy minima at the air/seawater interface. C15 and C30 exhibit deeper free energy minima at the interface when Span 80 is present, as compared to the situation when DOSS or no surfactants are at the interface.
View Article and Find Full Text PDFPotential of mean force (PMF) calculations and molecular dynamics (MD) simulations were performed to investigate the properties of oil n-alkanes [i.e., n-pentadecane (C15), n-icosane (C20) and n-triacontane (C30)], as well as several surfactant species [i.
View Article and Find Full Text PDFOil spills in the deep-sea environment such as the 2010 Deep Water Horizon oil spill in the Gulf of Mexico release vast quantities of crude oil into the sea-surface environment. Various investigators have discussed the marine transport and fate of the oil into different environmental compartments (air, water, sediment, and biota). The transport of the oil into the atmosphere in these previous investigations has been limited to only evaporation, a volatility dependent pathway.
View Article and Find Full Text PDF