Na metal batteries (NMBs) are attracting increasing attention because of their high energy density. However, the widespread application of NMBs is hindered by the growth of Na dendrites and interface instability. The design of artificial solid electrolyte interphase (SEI) with tuned chemical/electrochemical/mechanical properties is the key to achieving high-performance NMBs.
View Article and Find Full Text PDFMetal anodes are considered the holy grail for next-generation batteries because of their high gravimetric/volumetric specific capacity and low electrochemical potential. However, several unsolved challenges have impeded their practical applications, such as dendrite growth, interfacial side reactions, dead layer formation, and volume change. An electrochemically, chemically, and mechanically stable artificial solid electrolyte interphase is key to addressing the aforementioned issue with metal anodes.
View Article and Find Full Text PDFAlkali metals are regarded as the most promising candidates for advanced anode for the next-generation batteries due to their high specific capacity, low electrochemical potential, and lightweight. However, critical problems of the alkali metal anodes, especially dendrite formation and interface stabilization, remain challenging to overcome. The solid electrolyte interphase (SEI) is a key factor affecting Li and Na deposition behavior and electrochemical performances.
View Article and Find Full Text PDF