Publications by authors named "Parham Ghassemi"

This study reveals a new microfluidic biosensor consisting of a multi-constriction microfluidic device with embedded electrodes for measuring the biophysical attributes of single cells. The biosensing platform called the iterative mechano-electrical properties (iMEP) analyzer captures electronic records of biomechanical and bioelectrical properties of cells. The iMEP assay is used in conjunction with standard migration assays, such as chemotaxis-based Boyden chamber and scratch wound healing assays, to evaluate the migratory behavior and biophysical properties of prostate cancer cells.

View Article and Find Full Text PDF

This paper presents a new cell culture platform enabling label-free surface-enhanced Raman spectroscopy (SERS) analysis of biological samples. The platform integrates a multilayered metal-insulator-metal nanolaminated SERS substrate and polydimethylsiloxane (PDMS) multiwells for the simultaneous analysis of cultured cells. Multiple cell lines, including breast normal and cancer cells and prostate cancer cells, were used to validate the applicability of this unique platform.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) in blood can provide valuable information when detecting, diagnosing, and monitoring cancer. This paper describes a system that consists of a constriction-based microfluidic sensor with embedded electrodes that can detect and enumerate cancer cells in blood. The biosensor measures impedance in terms of magnitude and phase at multiple frequencies as cells transit through the constriction channel.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has emerged as an ultrasensitive molecular-fingerprint-based technique for label-free biochemical analysis of biological systems. However, for conventional SERS substrates, SERS enhancement factors (EFs) strongly depend on background refractive index (RI), which prevents reliable spatiotemporal SERS analysis of living cells consisting of different extra-/intracellular organelles with a heterogeneous distribution of local RI values between 1.30 and 1.

View Article and Find Full Text PDF

This paper describes a new microfluidic biosensor with capabilities of studying single cell biophysical properties. The chip contains four parallel sensing channels, where each channel includes two constriction regions separated by a relaxation region. All channels share a pair of electrodes to record the electrical impedance.

View Article and Find Full Text PDF

A high-throughput multiconstriction microfluidic channels device can distinguish human breast cancer cell lines (MDA-MB-231, HCC-1806, MCF-7) from immortalized breast cells (MCF-10A) with a confidence level of ∼81-85% at a rate of 50-70 cells/min based on velocity increment differences through multiconstriction channels aligned in series. The results are likely related to the deformability differences between nonmalignant and malignant breast cells. The data were analyzed by the methods/algorithms of Ridge, nonnegative garrote on kernel machine (NGK), and Lasso using high-dimensional variables, including the cell sizes, velocities, and velocity increments.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are broadly accepted as an indicator for early cancer diagnosis and disease severity. However, there is currently no reliable method available to capture and enumerate all CTCs as most systems require either an initial CTC isolation or antibody-based capture for CTC enumeration. Many size-based CTC detection and isolation microfluidic platforms have been presented in the past few years.

View Article and Find Full Text PDF

A microfluidic device composed of variable numbers of multiconstriction channels is reported in this paper to differentiate a human breast cancer cell line, MDA-MB-231, and a nontumorigenic human breast cell line, MCF-10A. Differences between their mechanical properties were assessed by comparing the effect of single or multiple relaxations on their velocity profiles which is a novel measure of their deformation ability. Videos of the cells were recorded via a microscope using a smartphone, and imported to a tracking software to gain the position information on the cells.

View Article and Find Full Text PDF