Objective: Motor vehicle crashes (MVCs) are the leading cause of cervical spine dislocation. The mechanisms underlying this injury are unclear, limiting the development of injury prevention devices and strategies. MVC databases contain occupant, medical, vehicle, and crash details that are not routinely collected elsewhere, providing a unique resource for investigating injury mechanisms and risk factors.
View Article and Find Full Text PDFBackground: Facet fractures are frequently associated with clinically observed cervical facet dislocations (CFDs); however, to date there has only been one experimental study, using functional spinal units (FSUs), which has systematically produced CFD with concomitant facet fracture. The role of axial compression and distraction on the mechanical response of the cervical facets under intervertebral motions associated with CFD in FSUs has previously been shown. The same has not been demonstrated in multi-segment lower cervical spine specimens under flexion loading (postulated to be the local injury vector associated with CFD).
View Article and Find Full Text PDFKnee arthroplasty technique is constantly evolving and the opportunity for surgeons to practice new techniques is currently highly dependent on the availability of cadaveric specimens requiring certified facilities. The high cost, limited supply, and heterogeneity of cadaveric specimens has increased the demand for synthetic training models, which are currently limited by a lack of biomechanical fidelity. Here, we aimed to design, manufacture, and experimentally validate a synthetic knee surgical training model which reproduces the flexion dependent varus-valgus (VV) and anterior-posterior (AP) mechanics of cadaveric knees, while maintaining anatomic accuracy.
View Article and Find Full Text PDF