Publications by authors named "Paresh Agarwal"

Vaccine development against group A (GAS) has gained traction in the last decade, fuelled by recognition of the significant worldwide burden of the disease. Several vaccine candidates are currently being evaluated in preclinical and early clinical studies. Here, we investigate two conjugate vaccine candidates that have shown promise in mouse models of infection.

View Article and Find Full Text PDF

Strain-promoted azide-alkyne cycloaddition (SPAAC) reactions like click chemistry have the potential to be highly scalable, robust, and cost-effective methods for generating small- and large-molecule conjugates for a variety of applications. However, despite method improvements, the rates of copper-based click chemistry reactions continue to be much faster than the rates of copper-free click chemistry reactions, which makes broader deployment of click chemistry challenging from a safety and compatibility standpoint. In this study, we used a zwitterionic detergent, namely, lauryldimethylamine -oxide (LDAO), in a copper-free click chemistry reaction to investigate its impact on the generation of conjugate vaccines (CVs).

View Article and Find Full Text PDF

Despite widespread utilization of pneumococcal conjugate vaccines (PCVs) and the resultant disease reduction, the development of PCVs containing additional serotypes remains a public health priority due to serotype replacement and the resultant shift to non-vaccine containing serotypes. However, incorporating additional serotypes to existing PCVs using conventional technologies has proven problematic. Immune responses to individual serotypes have consistently decreased as more polysaccharide-conjugates are added due to carrier suppression.

View Article and Find Full Text PDF

Cell surface glycosylation is thought to be involved in barrier function against microbes at mucosal surfaces. Previously we showed that the epithelium of healthy mouse corneas becomes vulnerable to adhesion if it lacks the innate defense protein MyD88 (myeloid differentiation primary response gene 88), or after superficial injury by blotting with tissue paper. Here we explored their effect on corneal surface glycosylation using a metabolic label, tetra-acetylated -azidoacetylgalactosamine (AcGalNAz).

View Article and Find Full Text PDF

Vertebrate glycans constitute a large, important, and dynamic set of post-translational modifications that are notoriously difficult to manipulate and image. Although the chemical reporter strategy has been used in conjunction with bioorthogonal chemistry to image the external glycosylation state of live zebrafish and detect tumor-associated glycans in mice, the ability to image glycans systemically within a live organism has remained elusive. Here, we report a method that combines the metabolic incorporation of a cyclooctyne-functionalized sialic acid derivative with a ligation reaction of a fluorogenic tetrazine, allowing for the imaging of sialylated glycoconjugates within live zebrafish embryos.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs.

View Article and Find Full Text PDF

Aldehyde- and ketone-functionalized biomolecules have found widespread use in biochemical and biotechnological fields. They are typically conjugated with hydrazide or aminooxy nucleophiles under acidic conditions to yield hydrazone or oxime products that are relatively stable, but susceptible to hydrolysis over time. We introduce a new reaction, the hydrazino-Pictet-Spengler (HIPS) ligation, which has two distinct advantages over hydrazone and oxime ligations.

View Article and Find Full Text PDF

Aldehyde- and ketone-functionalized proteins are appealing substrates for the development of chemically modified biotherapeutics and protein-based materials. Their reactive carbonyl groups are typically conjugated with α-effect nucleophiles, such as substituted hydrazines and alkoxyamines, to generate hydrazones and oximes, respectively. However, the resulting C=N linkages are susceptible to hydrolysis under physiologically relevant conditions, which limits the utility of such conjugates in biological systems.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9004gadh4vnepgmg484r0shjramos07i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once