The study presents the fabrication and superior photoactivity of a ternary g-CN/FeVO/AgBr heterojunction nanocomposite, synthesized via a chemical precipitation method for effective degradation of tetracycline (TC) and Victoria Blue (VB) dye under light illumination. The morphology and the crystal size of the synthesized nanocomposite were characterized by using FESEM and XRD and the calculated grain size (100.39 nm) is larger than the crystal size (48.
View Article and Find Full Text PDFProsthodontic rehabilitation is incomplete without taking aesthetic considerations into mind, even in the elderly, who are assumed to be mainly concerned about the loss of masticatory ability rather than an alteration in appearance. The ageing process brings changes in facial appearance, which if more pronounced lead to unacceptable facial aesthetics. A common means of restoring the support of ageing-induced sunken cheeks is the use of cheek plumper.
View Article and Find Full Text PDFSeveral parameters affect our brain's neuronal system and can be identified by analyzing electroencephalogram (EEG) signals. One of the parameters is alcoholism, which affects the pattern of our EEG signals. By analyzing these EEG signals, one can derive information regarding the alcoholic or normal stage of an individual.
View Article and Find Full Text PDFThis review explores the crystallographic versatility of niobium pentoxide (NbO) at the nanoscale, showcasing enhanced catalytic efficiency for cutting-edge sustainable energy and environmental applications. The synthesis strategies explored encompass defect engineering, doping engineering, s-scheme formation, and heterojunction engineering to fine-tune the physicochemical attributes of diverse dimensional (0-D, 1-D, 2-D, and 3-D) NbO nanosystems as per targeted application. In addressing escalating environmental challenges, NbO emerges as a semiconductor photocatalyst with transformative potential, spanning applications from dye degradation to antibiotic and metal removal.
View Article and Find Full Text PDFWe have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by . Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against .
View Article and Find Full Text PDFWe have developed an Ir(PPy) photoredox-catalyzed cross-coupling reaction that allows installation of quinoxalinones at the C7 position of thiazolino ring-fused 2-pyridones (TRPs) under mild conditions. The methodology tolerates various substituted quinoxalinones and biologically relevant substituents on the C8 position of the TRP. The TRP scaffold has large potential in the development of lead compounds, and while the coupled products are interesting from a drug-development perspective, the methodology will be useful for developing more potent and drug-like TRP-based candidates.
View Article and Find Full Text PDFPhotocatalysis has been widely used as one of the most promising approaches to remove various pollutants in liquid or gas phases during the last decade. The main emphasis of the study is on the synergy of vacancy engineering and heterojunction formation, two widely used modifying approaches, to significantly alter photocatalytic performance. The vacancy-induced AgCO/BiOBr/WO heterojunction system has been fabricated using a co-precipitation technique to efficiently abate methylene blue (MB) dye and doxycycline (DC) antibiotic.
View Article and Find Full Text PDFHazardous heavy metal (HM) pollution constitutes a pervasive global challenge, posing substantial risks to ecosystems and human health. The exigency for expeditious detection, meticulous monitoring, and efficacious remediation of HM within ecosystems is indisputable. Soil contamination, stemming from a myriad of anthropogenic activities, emerges as a principal conduit for HM ingress into the food chain.
View Article and Find Full Text PDFArsenic (As) contaminated water, especially groundwater reservoirs, is a major issue worldwide owing to its hazardous consequences on human health and the global environment issues. Also, irrigating agricultural fields with As-contaminated water not only produces an accumulation of As in the soil but also compromises food safety due to As entering into agricultural products. Hence, there is an urgent need to develop an efficient method for As removal in water.
View Article and Find Full Text PDFIncreasing food waste is creating a global waste (and management) crisis. Globally, ∼1.6 billion tons of food is wasted annually, worth ∼$1.
View Article and Find Full Text PDFThe present study explores visible light-assisted photodegradation of ciprofloxacin hydrochloride (CIP) antibiotic as a promising solution to water pollution. The focus is on transforming the optical and electronic properties of BiOCl through the generation of oxygen vacancies (OVs) and the exposure of (110) facets, forming a robust S-scheme heterojunction with WS. The resultant OVs mediated composite with an optimal ratio of WS and BiOCl-OV (4-WS/BiOCl-OV) demonstrated remarkable efficiency (94.
View Article and Find Full Text PDFThe survival of humanity is severely threatened by the massive accumulation of waste in the ecosystem. One plausible solution for the management and upcycling of waste is conversing waste at the molecular level and deriving carbon-based nanomaterial. The field of carbon nanomaterials with distinctive properties, such as exceptionally large surface areas, good thermal and chemical stability, and improved propagation of charge carriers, remains a significant area of research.
View Article and Find Full Text PDFWe have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that have antimicrobial activities against a broad-spectrum of Gram-positive pathogens. Here we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by . Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against .
View Article and Find Full Text PDFA selective [4 + 2] cycloaddition reaction of thiazolo-2-pyridones with arynes has been demonstrated. The developed protocol allows rapid access to highly functionalized, structurally complex thiazolo-fused bridged isoquinolones in high yields, which are susceptible to further late-stage functionalization.
View Article and Find Full Text PDFThe COVID-19 pandemic has caused unprecedented global health and economic crises. The emergence of long COVID-19 has raised concerns about the interplay between SARS-CoV-2 infections, climate change, and the environment. In this context, a concise analysis of the potential long-term effects of the COVID-19 epidemic along with the awareness aboutenvironmental issues are realized.
View Article and Find Full Text PDFHerein, we have reported a photocatalytic BiOI, protonated g-CN heterojunction with directional charge transfer channels provided by tea waste biochar to achieve effective e/h pair isolation for the improved degradation of Methylene blue (MB) and Doxycycline hydrochloride (DCHCl). An S-scheme heterojunction was fabricated via the novel method that combined hydrothermal and ultrasonic dispersion, followed by an electrostatic self-assembly route. The as-fabricated BiOI/protonated g-CN/Tea waste biochar heterojunction formed a strong contact at the interface, as supported by the electron microscopic results.
View Article and Find Full Text PDFConstructing an effective multi-heterojunction photocatalyst with maximum charge carrier separation remains challenging. Herein, a high-efficient CoO/MIL-88A/Mn-SrTiO (CoO/MIL/Mn-STO) n-p-n heterojunction photocatalyst was successfully prepared by a simple hydrothermal method for the photodegradation of sulfamethoxazole (SMX). The combination of MIL and CoO/Mn-STO established an internal electric field and heterojunction, accelerating the separation of carriers, and thus improved photocatalytic performance.
View Article and Find Full Text PDFRapid urbanization and rising vehicular population are the main precursors in increasing air pollutants concentration which negatively influences the surrounding ecosystem. Roadside plants are frequently used as the barrier against traffic emissions to minimize the effects of air pollution. They are, however, vulnerable to various contaminants, and their tolerance capacity varies.
View Article and Find Full Text PDFOne of the most important properties of cellulolytic enzyme is its ability to convert cellulosic polymer into monomeric fermentable sugars which are carbohydrate by nature can efficiently convert into biofuels. However, higher production costs of these enzymes with moderate activity-based stability are the main obstacles to making cellulase-based applications sustainably viable, and this has necessitated rigorous research for the economical availability of this process. Using water hyacinth (WH) waste leaves as the substrate for cellulase production under solid state fermentation (SSF) while treating the fermentation production medium with CuO (cupric oxide oxide) bionanocatalyst have been examined as ways to make fungal cellulase production economically feasible.
View Article and Find Full Text PDFThe appearance of the contagious virus COVID-19, several revelations and environmental health experts punctually predicted the possibly disastrous public health complications of coexisting catching and airborne contamination-arbitrated disease. But much attention has been given on the outdoor-mediated interactions. Almost 3.
View Article and Find Full Text PDFIn the present era of global climate change, the scarcity of potable water is increasing both due to natural and anthropogenic causes. Water is the elixir of life, and its usage has risen significantly due to escalating economic activities, widespread urbanization, and industrialization. The increasing water scarcity and rising contamination have compelled, scientists and researchers, to adopt feasible and sustainable wastewater treatment methods in meeting the growing demand for freshwater.
View Article and Find Full Text PDF