Bioorg Med Chem Lett
January 2011
A novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKβ. In this Letter we document our early efforts at optimization of the quinoline core, the imidazole and the semithiocarbazone moiety. Most potency gains came from substitution around the 6- and 7-positions of the quinoline ring.
View Article and Find Full Text PDFA novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKβ. In this Letter we document our efforts at further optimization of this series, culminating in 2 with submicromolar potency in a HWB assay and efficacy in a CIA mouse model.
View Article and Find Full Text PDFBackground: Angiogenesis is involved in tumor growth, macular degeneration, retinopathy and other diseases. Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to specific receptors (VEGFRs) on the surface of vascular endothelial cells. VEGFRs are receptor tyrosine kinases that, like the platelet-derived growth factor receptors (PDGFRs), contain a large insert within the kinase domain.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
February 1999
Under anaerobic conditions, the reaction catalysed by pyruvate formate-lyase (PFL) is the first reaction after the production of pyruvate in the glycolytic pathway. Crystallization trials with Escherichia coli PFL were unsuccessful and therefore limited proteolysis was used to produce a stable crystallizable N--terminal protein fragment by trypsin cleavage. The molecular weight of this cleavage product was found to be 69.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) is a dimeric protein which induces formation of new blood vessels (angiogenesis) through binding to VEGF-receptor-2 tyrosine kinase (VEGFR2 TK) or KDR (kinase insert domain-containing receptor) on the surface of endothelial cells. Angiogenesis has been shown to be essential for malignancy of tumors; therefore, VEGFR2 TK is a potential therapeutic target for the treatment of cancer. Sequence homology studies indicate that VEGFR2 TK contains three domains: extracellular (ligand-binding domain), transmembrane, and intracellular (catalytic domain).
View Article and Find Full Text PDFWe here report EPR studies that provide evidence for radical intermediates generated from the glycyl radical of activated pyruvate formate-lyase (PFL) during the process of oxygen-dependent enzyme inactivation, radical quenching, and protein fragmentation. Upon exposure of active PFL to air, a long-lived radical intermediate was generated, which exhibits an EPR spectrum assigned to a sulfinyl radical (RSO*). The EPR spectrum of a sulfinyl radical was also generated from the activated C418A mutant of PFL, indicating that Cys 418 is not the site of sulfinyl radical formation.
View Article and Find Full Text PDFPyruvate formate-lyase (PFL) is a glycyl radical-containing enzyme that catalyzes the reversible, nonoxidative conversion of pyruvate and CoA into acetyl-CoA and formate. The radical is located on the alpha-carbon of glycine 734 and is required for catalysis. Two cysteine residues, C418 and C419, are also essential for catalysis.
View Article and Find Full Text PDFPyruvate formate-lyase (PFL) catalyzes the reversible conversion of CoA and pyruvate into acetyl-CoA and formate. Active enzyme contains a glycyl radical whose alpha-hydrogen undergoes rapid exchange with solvent (t1/2 approximately 5 min at 0 degree C). We have investigated this exchange using site-directed mutagenesis and mechanism-based inactivation.
View Article and Find Full Text PDF