Publications by authors named "Parasmani Pageni"

Compared with single-network hydrogels, double-network hydrogels offer higher mechanical strength and toughness. Integrating useful functions into double-network hydrogels can expand the portfolios of the hydrogels. We report the preparation of double-network metallopolymer hydrogels with remarkable hydration, antifouling, and antimicrobial properties.

View Article and Find Full Text PDF

Cobaltocenium-containing polyelectrolyte block copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using aqueous dispersion RAFT polymerization. The cationic steric stabilizer was a macromolecular chain-transfer agent (macro-CTA) based on poly (2-cobaltocenium amidoethyl methacrylate chloride) (PCoAEMACl), and the core-forming block was poly(2-hydroxypropyl methacrylate) (PHPMA). Stable cationic spherical nanoparticles were formed in aqueous solution with low dispersity without adding any salts.

View Article and Find Full Text PDF

Bacterial infection has evolved into one of the most dangerous global health crises. Designing potent antimicrobial agents that can combat drug-resistant bacteria is essential for treating bacterial infections. In this paper, a strategy to graft metallopolymer-antibiotic bioconjugates on gold nanoparticles is developed as an antibacterial agent to fight against different bacterial strains.

View Article and Find Full Text PDF

The fields of soft polymers and macromolecular sciences have enjoyed a unique combination of metals and organic frameworks in the name of metallopolymers or organometallic polymers. When metallopolymers carry charged groups, they form a class of metal-containing polyelectrolytes or metallo-polyelectrolytes. This review identifies the unique properties and functions of metallo-polyelectrolytes compared with conventional organo-polyelectrolytes, in the hope of shedding light on the formation of functional materials with intriguing applications and potential benefits.

View Article and Find Full Text PDF

Over-prescription and improper use of antibiotics has led to the emergence of bacterial resistance, posing a major threat to public health. There has been significant interest in the development of alternative therapies and agents to combat antibiotic resistance. We report the preparation of recyclable magnetic iron oxide nanoparticles grafted with charged cobaltocenium-containing metallopolymers by surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization.

View Article and Find Full Text PDF

Inappropriate and frequent use of antibiotics has led to the development of antibiotic-resistant bacteria, which cause infectious diseases that are difficult to treat. With the rising threat of antibiotic resistance, the need to develop effective new antimicrobial agents is prominent. We report antimicrobial metallopolymer nanoparticles, which were prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization of a cobaltocenium-containing methacrylate monomer from silica nanoparticles.

View Article and Find Full Text PDF

Chemically inert, mechanically tough, cationic metallo-polyelectrolytes were conceptualized and designed as durable anion-exchange membranes (AEMs). Ring-opening metathesis polymerization (ROMP) of cobaltocenium-containing cyclooctene with triazole as the only linker group, followed by backbone hydrogenation, led to a new class of AEMs with a polyethylene-like framework and alkaline-stable cobaltocenium cation for ion transport. These AEMs exhibited excellent thermal, chemical and mechanical stability, as well as high ion conductivity.

View Article and Find Full Text PDF

We report the synthesis of cationic cobaltocenium and neutral ferrocene containing homopolymers mediated by photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization with a photocatalyst fac-[Ir(ppy)]. The homopolymers were further used as macromolecular chain transfer agents to synthesize diblock copolymers via chain extension. Controlled/"living" feature of photoinduced RAFT polymerization was confirmed by kinetic studies even without prior deoxygenation.

View Article and Find Full Text PDF

Cationic cobaltocenium-containing polyelectrolytes have a unique ability to form ionic complex with various anionic species. We carried out two sets of model study to compare the relative binding strength of a cobaltocenium-containing polyelectrolyte. First, the nature and relative strength of intermolecular interaction between cobaltocenium-containing polyelectrolytes and different anionic probes were investigated by spectroscopic methods.

View Article and Find Full Text PDF

Bacterial infections, particularly by Gram-negative pathogens, have become a serious threat to global healthcare due to the diminishing effectiveness of existing antibiotics. We report a nontraditional therapy to combine three components in one macromolecular system, in which boronic acid adheres to peptidoglycan or lipopolysaccharide via boron-polyol based boronolectin chemistry, cationic metal polymer frameworks interact with negatively charged cell membranes, and β-lactam antibiotics are reinstated with enhanced vitality to attack bacteria via evading the detrimental enzyme-catalyzed hydrolysis. These macromolecular systems exhibited high efficacy in combating pathogenic bacteria, especially Gram-negative strains, due to synergistic effects of multicomponents on interactions with bacterial cells.

View Article and Find Full Text PDF

Metal-containing polymer hydrogels have attracted increasing interest in recent years due to their outstanding properties such as biocompatibility, recoverability, self-healing, and/or redox activity. In this short review, methods for the preparation of metal-containing polymer hydrogels are introduced and an overview of these hydrogels with various functionalities is given. It is hoped that this short update can stimulate innovative ideas to promote the research of metal-containing hydrogels in the communities.

View Article and Find Full Text PDF

Metallopolymers combine a processable, versatile organic polymeric skeleton with functional metals, providing multiple functions and methodologies in materials science. Taking advantage of cationic cobaltocenium as the key building block, organogels could be simply switched to hydrogels via a highly efficient ion exchange. With the unique ionic complexion ability, cobaltocenium moieties provide a robust soft substrate for recycling antibiotics from water.

View Article and Find Full Text PDF