Publications by authors named "Parashu R Kharel"

Materials exhibiting a high degree of spin polarization in electron transport are in demand for applications in spintronics-an emerging technology utilizing a spin degree of freedom in electronic devices. Room-temperature half-metals are considered ideal candidates, as they behave as an insulator for one spin channel and as a conductor for the other spin channel. In addition, for nano-size devices, one has to take into account possible modification of electronic structure in thin-film geometry, due to the potential presence of surface/interface states.

View Article and Find Full Text PDF

The role of B on the microstructure and magnetism of ZrCo MoB ribbons prepared by arc melting and melt spinning is investigated. Microstructure analysis show that the ribbons consist of a hard-magnetic rhombohedral ZrCo phase and a minor amount of soft-magnetic Co. We show that the addition of B increases the amount of hard-magnetic phase, reduces the amount of soft-magnetic Co and coarsens the grain size from about 35 nm to 110 nm.

View Article and Find Full Text PDF

The transformation of Fe nanoparticles by trioctylphosphine (TOP) to phase-pure samples of either Fe(2)P or FeP is reported. Fe nanoparticles were synthesized by the decomposition of Fe(CO)(5) in a mixture of octadecene and oleylamine at 200 degrees C and were subsequently reacted with TOP at temperatures in the region of 350-385 degrees C to yield iron phosphide nanoparticles. Shorter reaction times favored an iron-rich product (Fe(2)P), and longer reaction times favored a phosphorus-rich product (FeP).

View Article and Find Full Text PDF

Nanocrystals of thermodynamically stable alpha-MnAs (hexagonal NiAs-type) and metastable beta-MnAs (orthorhombic MnP-type) have been synthesized by the reaction of triphenylarsine oxide (Ph(3)AsO) and dimanganesedecacarbonyl (Mn(2)CO(10)) at temperatures ranging from 250 to 330 degrees C in the presence of the coordinating solvent trioctylphosphine oxide (TOPO). Morphologically, both alpha- and beta-MnAs nanoparticles adopt a core-shell type structure with a crystalline core and low-contrast noncrystalline shell. In contrast to prior studies on MnAs particles, disks, and films, the present bottom-up synthesis yields discrete, dispersible MnAs nanoparticles without a structural support.

View Article and Find Full Text PDF