Publications by authors named "Parash Prasad"

The bone marrow (BM) stromal cell microenvironment contains non-hematopoietic stromal cells called mesenchymal stromal cells (MSCs). MSCs are plastic adherent, form CFU-Fs, and give rise to osteogenic, adipogenic, chondrogenic progenitors, and most importantly provide HSC niche factor chemokine C-X-C motif ligand 12 (CXCL12) and stem cell factor (SCF). Different authors have defined different markers for mouse MSC identification like PDGFRSca-1 subsets, Nestin, or LepR cells.

View Article and Find Full Text PDF

We have purified Peptidase M84 from in an effort to isolate anticancer proteases from environmental microbial isolates. This metallo-protease had no discernible impact on normal cell survival, but it specifically induced apoptosis in ovarian cancer cells. PAR-1, a GPCR which is reported to be overexpressed in ovarian cancer cells, was identified as a target of Peptidase M84.

View Article and Find Full Text PDF

Hematopoietic stem cell (HSC) transplantation-based treatments are in different phases of clinical development, ranging from current therapies to a promise in the repair and regeneration of diseased tissues and organs. Mesenchymal stromal/stem cells (MSCs), which are fibroblast-like heterogeneous progenitors with multilineage differentiation (osteogenic, chondrogenic, and adipogenic) and self-renewal potential, and exist in the bone marrow (BM), adipose, and synovium, among other tissues, represent one of the most widely used sources of stem cells in regenerative medicine. MSCs derived from bone marrow (BM-MSCs) exhibit a variety of traits, including the potential to drive HSC fate and anti-inflammatory and immunosuppressive capabilities via paracrine activities and interactions with the innate and adaptive immune systems.

View Article and Find Full Text PDF

Application of nanoradiopharmaceuticals for molecular imaging has gained worldwide importance for their multifaceted potentials focusing on providing a safe and cost-effective approach. Biodistribution studies on such species are capable of bringing nanomedicine to patients. Current therapeutically available labeling strategies suffer from different limitations, including off-target cytotoxicity and radiolabel release over time.

View Article and Find Full Text PDF

Misfolded peptide amyloid beta (Aβ), neurofibrillary tangles of hyper-phosphorylated tau, oxidative damage to the brain, and neuroinflammation are distinguished determinants of Alzheimer's disease (AD) responsible for disease progression. This multifaceted neurodegenerative disease is challenging to cure under a single treatment regime until the key disease determinants are traced for their sequential occurrence in disease progression. In an early report, a novel side-chain tripeptide containing PEGylated block copolymer has been tested thoroughly in vitro and in silico for the early inhibition of Aβ aggregation as well as degradation of preformed Aβ fibril deposits.

View Article and Find Full Text PDF

Ovarian cancer ranks fifth in terms of cancer mortality in women due to lack of early diagnosis and poor clinical management. Characteristics like high cellular proliferation, EMT and metabolic alterations contribute to oncogenicity. Cancer, being a "metabolic disorder," is governed by various key regulatory factors like metabolic enzymes, oncogenes, and tumor suppressors.

View Article and Find Full Text PDF

Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes.

View Article and Find Full Text PDF

Cancer cells are dependent on glutamine for their metabolism and growth. Despite being the most abundant amino acid in the blood, glutamine deprivation occurs in the core of the tumor rendering less access to glutamine to the nearby tumor cells. Tumor cells mostly use the glutamine for mitochondrial oxidative phosphorylation (OXPHOS) to produce energy and the ingredients of the biomass required for the highly proliferating and metastatic ovarian cancer cells.

View Article and Find Full Text PDF

Glutamine is essential for maintaining the TCA cycle in cancer cells yet they undergo glutamine starvation in the core of tumors. Cancer stem cells (CSCs), responsible for tumor recurrence are often found in the nutrient limiting cores. Our study uncovers the molecular basis and cellular links between glutamine deprivation and stemness in the cancer cells.

View Article and Find Full Text PDF

Cancer cells need extensive energy supply for their uncontrolled cell division and metastasis which is exclusively dependent on neighboring cells, especially adipocytes. Herein, we have introduced a novel herbometallic nano-drug, Heerak Bhasma nanoparticle (HBNP) from natural resources showing high potential in the reduction of energy supply thereby promoting cell death in breast cancer cells. Inductively coupled plasma optical emission spectra (ICP-OES), atomic absorption spectra (AAS), Raman spectra, X-ray diffraction analyses confirmed the physicochemical properties of HBNP.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the fourth most common gynecological malignancy due to its highly aggressive, recurrent, and drug-resistant nature. The last two features are rendered by the presence of cancer stem cells (CSCs). Factors like TGFβ1 and their downstream signaling pathways are upregulated in most cancers and are known to induce EMT and stemness, but the exact mechanisms underlying the process remain unelucidated.

View Article and Find Full Text PDF