A simple protocol is outlined herein for rapid access to enantiopure unnatural amino acids (UAAs) from trivial glutamate and aspartate precursors. The method relies on Ag/Ni-electrocatalytic decarboxylative coupling and can be rapidly conducted in parallel (24 reactions at a time) to ascertain coupling viability followed by scale-up for the generation of useful quantities of UAAs for exploratory studies.
View Article and Find Full Text PDFTaxol (a brand name for paclitaxel) is widely regarded as among the most famed natural isolates ever discovered, and has been the subject of innumerable studies in both basic and applied science. Its documented success as an anticancer agent, coupled with early concerns over supply, stimulated a furious worldwide effort from chemists to provide a solution for its preparation through total synthesis. Those pioneering studies proved the feasibility of retrosynthetically guided access to synthetic Taxol, albeit in minute quantities and with enormous effort.
View Article and Find Full Text PDFAs an especially unique target for chemical synthesis, diazonamide A has the potential to be constructed through a plethora of synthetic routes, each attended by different challenges and opportunities for discovery. In this article, we detail our second total synthesis of diazonamide A through a sequence entirely distinct from that employed in our first campaign, one whose success required the development of several special strategies and tactics. We also disclose our complete studies regarding the chemical biology of diazonamide A and its structural congeners, and more fully delineate the scope of our protocol for Robinson-Gabriel cyclodehydration using pyridine-buffered POCl(3).
View Article and Find Full Text PDFIn this article, we describe further studies toward the originally proposed structure of diazonamide A (1). After confronting a number of failures in synthesizing the heterocyclic core of that structure, success was finally realized through the development of a novel hetero-pinacol-based macrocyclization cascade sequence. Subsequent elaboration led to an advanced compound bearing both of the 12-membered rings of the target molecule.
View Article and Find Full Text PDFThe asymmetric Weitz-Scheffer epoxidation of the isoflavones 3, mediated by the cinchonine- and cinchonidine-derived phase-transfer catalysts (PTCs) 1, affords the enantiomerically enriched isoflavone epoxides 4 with ee values of up to 98% in nearly quantitative yields. With the appropriately configured PTC 1, both enantiomers of the isoflavone epoxides may be obtained by using the commercially available cumyl hydroperoxide 2b as oxidant. Methylation of the hydroxy functionality in the most effective PTC (1b) reduces significantly the enantioselectivity of the isoflavone epoxidation as illustrated for the substrate 3c.
View Article and Find Full Text PDF