Publications by authors named "Parasaram V"

Preclinical evaluation of novel therapies using models of cancer is an important tool in cancer research, where imaging can provide non-invasive tools to characterise the internal structure and function of tumours. The short propagation paths when imaging tumours and organs in small animals allow the use of high frequencies for both ultrasound and shear waves, providing the opportunity for high-resolution shear wave elastography and hence its use for studying the heterogeneity of tissue elasticity, where heterogeneity may be a predictor of tissue response. Here we demonstrate vibrational shear wave elastography (VSWE) using a mechanical actuator to produce high frequency (up to 1000 Hz) shear waves in preclinical tumours, an alternative to the majority of preclinical ultrasound SWE studies where an acoustic radiation force impulse is required to create a relatively low-frequency broad-band shear-wave pulse.

View Article and Find Full Text PDF

Preclinical investigation of the biomechanical properties of tissues and their treatment-induced changes are essential to support drug-discovery, clinical translation of biomarkers of treatment response, and studies of mechanobiology. Here we describe the first use of preclinical 3D elastography to map the shear wave speed (cs), which is related to tissue stiffness, in vivo and demonstrate the ability of our novel 3D vibrational shear wave elastography (3D-VSWE) system to detect tumour response to a therapeutic challenge. We investigate the use of one or two vibrational sources at vibrational frequencies of 700, 1000 and 1200 Hz.

View Article and Find Full Text PDF

Background: Elastin degradation has been established as one of the driving factors of emphysema. Elastin-derived peptides (EDPs) are shown to act as a chemoattractant for monocytes. Effectively shielding elastin from elastolytic damage and regenerating lost elastin are two important steps in improving the mechanical function of damaged lungs.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) disease causes dilation of the aorta, leading to aortic rupture and death if not treated early. It is the 14th leading cause of death in the U.S.

View Article and Find Full Text PDF

Background: Skin aging is marked by progressive loss in elastin and collagen that causes wrinkling and sagging of skin. Tropoelastin (TE) is the precursor monomer of elastin secreted by cells that cross-links extracellularly to create functional elastic fibers. Cells maintain the capacity to make TE during the aging process.

View Article and Find Full Text PDF

Calcium phosphate cement (CPC) has been studied extensively due to its bioactivity and biodegradability. CPC is typically made by a combination of multiple calcium phosphates that form a paste that sets and hardens in the body after being combined with either water or an aqueous solution. It is highly moldable and easily manipulated, and CPCs possess osteoconductive properties.

View Article and Find Full Text PDF

Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts.

View Article and Find Full Text PDF

Degeneration of elastic lamina and vascular calcification are common features of vascular pathology such as aortic aneurysms. We tested whether dual therapy with targeted nanoparticles (NPs) can remove mineral deposits (by delivery of a chelating agent, ethylene diamine tetraacetic acid (EDTA)) and restore elastic lamina (by delivery of a polyphenol, pentagalloyl glucose (PGG)) to reverse moderate aneurysm development. EDTA followed by PGG NP delivery led to reduction in macrophage recruitment, matrix metalloproteinase (MMP) activity, elastin degradation and calcification in the aorta as compared to delivery of control blank NPs.

View Article and Find Full Text PDF

Degeneration of elastin plays a vital role in the pathology and progression of abdominal aortic aneurysm (AAA). Our previous study showed that pentagalloyl glucose (PGG), a core derivative of tannic acid, hinders the development of AAAs in a clinically relevant animal model when applied locally. In this study, we tested whether targeted nanoparticles (NPs) can deliver PGG to the site of an aneurysm and prevent aneurysmal growth by protecting elastin.

View Article and Find Full Text PDF

The present study was conducted during the years 2006 to 2012 and provides information on prevalence of malaria and its regulation with effect to various climatic factors in East Siang district of Arunachal Pradesh, India. Correlation analysis, Principal Component Analysis and Hotelling's T² statistics models are adopted to understand the effect of weather variables on malaria transmission. The epidemiological study shows that the prevalence of malaria is mostly caused by the parasite Plasmodium vivax followed by Plasmodium falciparum.

View Article and Find Full Text PDF