A novel hybrid hydrogel bead (HHBFe) composed of polyvinyl alcohol/sodium alginate/gelatin/quaternary ammonium chitosan (PVA/GA/SA/QCS) and FeO magnetic nanoparticles was developed through green cross-linking of Ca and tannic acid (TA) combined freeze-thaw method. HHBFe exhibited a good spherical shape, porosity, magnetic properties, and excellent mechanical properties and durability. The adsorption capacity of HHB and HHBFe towards methyl orange (MO), tetracycline (Tc), and Cr (VI) was systematically studied and compared.
View Article and Find Full Text PDFThe present study utilizes a combination of sodium alginate (Alg), gellan gum (GG), and sodium carboxymethyl cellulose (CMC) to fabricate a ternary composite hydrogel system to encapsulate and release lactoferrin (LF). Rheological properties as well as extensive microscopy and spectroscopy characterization are performed on these materials demonstrating that the physical properties of the resultant hydrogels, such as particle size, water content, gray value, and shrinkage rate were related to the concentration of Alg. In addition, most of these hydrogels were found to have reticulated shells and inner laminar structures assembled based on hydrogen bonding and electrostatic forces.
View Article and Find Full Text PDFIn advancing tissue engineering, we introduce a particle system combining the strength of calcium carbonate with the flexibility of hydrogels enhanced with alkaline phosphatase (ALP) for improved bone regeneration. Our innovation lies in creating large hybrid macrospheroids by bonding mineral nanostructured microparticles loaded with ALP through hydrogel polymerization. These composite macrospheroids address critical challenges in cell seeding, growth, and handling within three-dimensional (3D) environments.
View Article and Find Full Text PDFSodium alginate hydrogel beads and sodium alginate/gellan gum composite hydrogel beads crosslinked by calcium chloride were prepared with different alginate concentrations (3-20 mg·mL). Additionally, a simple method for growing CaCOin situ on the hydrogel to create novel inorganic-organic hybrid hydrogel beads was presented. FT-IR analysis revealed the involvement of hydrogen bonding and electrostatic interactions in bead formation.
View Article and Find Full Text PDFParticle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences.
View Article and Find Full Text PDFBiomaterials composed of food polysaccharides are of great interest for future biomedical applications due to their great biocompatibility, tunable mechanical properties, and complex architectural designs that play a crucial role in the modulation of cell adhesion and proliferation. In this work, a facile approach was designed to obtain novel 3D alginate-CaCO hybrid hydrogel particles in situ. Controlling the gel concentration from 3 to 20 mg·mL allows us to control the alginate-CaCO hydrogel particles' size and density (size variation from 1.
View Article and Find Full Text PDFStudying microplastics and nanoplastics (MNP) in environmental matrices is extremely challenging, and recent developments in labelling techniques may hold much promise to further our knowledge in this field. Here, we reviewed MNP labelling techniques and applications to provide the first systematic and in-depth insight into MNP labelling. We classified all labelling techniques for MNP into four main types (fluorescent, metal, stable isotope and radioisotope) and discussed per type the synthesis methods, detection methods, influencing factors, and the current and future applications and challenges.
View Article and Find Full Text PDFEfficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization.
View Article and Find Full Text PDFMagnetic systems have always been considered as attractive due to their remarkable versatility [...
View Article and Find Full Text PDFThe importance of the clearance of dead cells is shown to have a regulatory role for normal tissue homeostasis and for the modulation of immune responses. However, how mechanobiological properties of dead cells affect efferocytosis remains largely unknown. Here, it is reported that the Young's modulus of cancer cells undergoing ferroptosis is reduced.
View Article and Find Full Text PDFHybrid materials or hybrids incorporating organic and inorganic constituents are emerging as a very potent and promising class of materials due to the diverse but complementary nature of their properties. This complementarity leads to a perfect synergy of properties of the desired materials and products as well as to an extensive range of their application areas. Recently, we have overviewed and classified hybrid materials describing inorganics--organics in Part-I (Saveleva, et al.
View Article and Find Full Text PDFTransferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade.
View Article and Find Full Text PDFThis is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d.
View Article and Find Full Text PDFNanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order.
View Article and Find Full Text PDFTargeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells.
View Article and Find Full Text PDFBecause free therapeutic drug molecules often have adverse effects on normal tissues, deliver scanty drug concentrations and exhibit a potentially low efficacy at pathological sites, various drug carriers have been developed for preclinical and clinical trials. Their physicochemical and toxicological properties are the subject of extensive research. Inorganic calcium carbonate particles are promising candidates as drug delivery carriers owning to their hardness, porous internal structure, high surface area, distinctive pH-sensitivity, low degradability, etc, while soft organic alginate hydrogels are also widely used because of their special advantages such as a high hydration, bio-adhesiveness, and non-antigenicity.
View Article and Find Full Text PDFHydrogels, which are versatile three-dimensional structures containing polymers and water, are very attractive for use in biomedical fields, but they suffer from rather weak mechanical properties. In this regard, biocompatible particles can be used to enhance their mechanical properties. The possibility of loading such particles with drugs (e.
View Article and Find Full Text PDFIn current orthopedic practice, bone implants used to-date often exhibit poor osteointegration, impaired osteogenesis, and, eventually, implant failure. Actively pursued strategies for tissue engineering could overcome these shortcomings by developing new hybrid materials with bioinspired structure and enhanced regenerative potential. In this study, the osteogenic and therapeutic potential of bioactive vaterite is investigated as a functional component of a fibrous polymeric scaffold for bone regeneration.
View Article and Find Full Text PDFRibosome-inactivating proteins (RIPs) are capable of removing a specific adenine from 28S ribosomal RNA, thus inhibiting protein biosynthesis in an irreversible manner. In this study, recombinant OsRIP1, a type 1 RIP from rice (Oryza sativa L.), was investigated for its anti-proliferative properties.
View Article and Find Full Text PDFTo develop materials for drug delivery and tissue engineering and to study their efficiency with respect to ossification, it is necessary to apply physicochemical and biological analyses. The major challenge is labor-intensive data mining during synthesis and the reproducibility of the obtained data. In this work, we investigated the influence of time and temperature on the reaction yield, the reaction rate, and the size, shape, and phase of the obtained product in the completely controllable synthesis of calcium carbonate.
View Article and Find Full Text PDFAs the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO) microparticles in a vaterite-calcite polymorph mixture. CaCO-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one.
View Article and Find Full Text PDFBiomaterials engineered with specific cell binding sites, tunable mechanical properties, and complex architectures are essential to control cell adhesion and proliferation. The influence of the local properties, such as the local hardness and stability on the interaction with cells, has not been yet fully understood and exploited. This is particularly relevant for hydrogels, very promising materials with, unfortunately, poor cell adhesion properties, attributed mostly to their softness.
View Article and Find Full Text PDFWhile DNA and messenger RNA (mRNA) based therapies are currently changing the biomedical field, the delivery of genetic materials remains the key problem preventing the wide introduction of these methods into clinical practice. Therefore, the creation of new methods for intracellular gene delivery, particularly to hard-to-transfect, clinically relevant cell populations is a pressing issue. Here, we report on the design of a novel approach to format 50-150 nm calcium carbonate particles in the vaterite state and using them as a template for polymeric core-shell nanoparticles.
View Article and Find Full Text PDFDeveloping materials for tissue engineering and studying the mechanisms of cell adhesion is a complex and multifactor process that needs analysis using physical chemistry and biology. The major challenge is the labor-intensive data mining as well as requirements of the number of advanced techniques. For example, hydrogel-based biomaterials with cell-binding sites, tunable mechanical properties, and complex architectures have emerged as a powerful tool to control cell adhesion and proliferation for tissue engineering.
View Article and Find Full Text PDFWhey protein isolate (WPI) is a by-product from the production of cheese and Greek yoghurt comprising β-lactoglobulin (β-lg) (75%). Hydrogels can be produced from WPI solutions through heating; hydrogels can be sterilized by autoclaving. WPI hydrogels have shown cytocompatibility and ability to enhance proliferation and osteogenic differentiation of bone-forming cells.
View Article and Find Full Text PDF