Potency determination of potential skin sensitizers in humans is essential for quantitative risk assessment and proper risk management. SENS-IS is an in vitro test based on a reconstructed human skin model, that was developed to predict the hazard and potency of potential skin sensitizers. The performance of the SENS-IS assay in potency prediction for 174 materials was evaluated for this work.
View Article and Find Full Text PDFThe U-SENS™ assay was developed to address the third key event of the skin sensitization adverse outcome pathway (AOP) and is described in OECD test guideline 442E, Annex II. A dataset of 68 fragrance ingredients comprised of 7 non-sensitizers and 61 sensitizers was tested in the U-SENS™ assay. The potential for fragrance ingredients to activate dendritic cells, measured by U-SENS™, was compared to the sensitization potential determined by weight of evidence (WoE) from historical data.
View Article and Find Full Text PDFThe assessment of skin sensitization has evolved over the past few years to include in vitro assessments of key events along the adverse outcome pathway and opportunistically capitalize on the strengths of in silico methods to support a weight of evidence assessment without conducting a test in animals. While in silico methods vary greatly in their purpose and format; there is a need to standardize the underlying principles on which such models are developed and to make transparent the implications for the uncertainty in the overall assessment. In this contribution, the relationship between skin sensitization relevant effects, mechanisms, and endpoints are built into a hazard assessment framework.
View Article and Find Full Text PDFA previously published fragmentation method for making reliable negative in silico predictions has been applied to the problem of predicting skin sensitisation in humans, making use of a dataset of over 2750 chemicals with publicly available skin sensitisation data from 18 in vivo assays. An assay hierarchy was designed to enable the classification of chemicals within this dataset as either sensitisers or non-sensitisers where data from more than one in vivo test was available. The negative prediction approach was validated internally, using a 5-fold cross-validation, and externally, against a proprietary dataset of approximately 1000 chemicals with in vivo reference data shared by members of the pharmaceutical, nutritional, and personal care industries.
View Article and Find Full Text PDFCosmetics Europe, the European Trade Association for the cosmetics and personal care industry, is conducting a multi-phase program to develop regulatory accepted, animal-free testing strategies enabling the cosmetics industry to conduct safety assessments. Based on a systematic evaluation of test methods for skin sensitization, five non-animal test methods (DPRA (Direct Peptide Reactivity Assay), KeratinoSens, h-CLAT (human cell line activation test), U-SENS, SENS-IS) were selected for inclusion in a comprehensive database of 128 substances. Existing data were compiled and completed with newly generated data, the latter amounting to one-third of all data.
View Article and Find Full Text PDFThe use of this material under current conditions is supported by existing information. The material (dihydro-β-terpinyl acetate) was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the read across analog menthyl acetate (1α,2β,5α) (CAS # 89-48-5) show that dihydro-β- terpinyl acetate is not genotoxic nor does it have skin sensitization potential.
View Article and Find Full Text PDF