Publications by authors named "Parakalan Rangarajan"

Chronic neuroinflammation is a pathological feature of a number of central nervous system (CNS) diseases and is mediated by sustained activation of microglial cells, the innate immune cells of the CNS. Studies have mainly focused on identifying the molecular and epigenetic mechanisms of microglial activation. This is crucial in designing therapeutic strategies for neuropathologies in which prolonged microglial activation is known to exacerbate disease condition.

View Article and Find Full Text PDF

Background: Scutellarin, an anti-inflammatory agent, effectively suppressed microglia activation in rats with middle cerebral artery occlusion (MCAO). Robust microglia activation, acute in onset, was followed by astrogliosis. This study was aimed to determine if scutellarin would also affect the reactive astrocytes that play an important role in tissue repair.

View Article and Find Full Text PDF

Background: Activated microglial cells release an excess of inflammatory mediators after an ischemic stroke. We reported previously that scutellarin effectively suppressed the inflammatory response induced by activated microglia in rats subjected to middle cerebral artery occlusion (MCAO); however, the mechanism via which scutellarin exerts its effects on microglial activation has not been explored. This study aimed to elucidate if scutellarin can regulate the Notch pathway that is linked to microglia activation in MCAO rat, and in lipopolysaccharide (LPS)-induced BV-2 microglia.

View Article and Find Full Text PDF

Background: In response to cerebral ischemia, activated microglia release excessive inflammatory mediators which contribute to neuronal damage. Therefore, inhibition of microglial over-activation could be a therapeutic strategy to alleviate various microglia-mediated neuroinflammation. This study was aimed to elucidate the anti-inflammatory effects of Scutellarin and Edaravone given either singly, or in combination in activated microglia in rats subjected to middle cerebral artery occlusion (MCAO), and in lipopolysaccharide (LPS)-induced BV-2 microglia.

View Article and Find Full Text PDF

Purpose: Hypoxic insult to the developing retina results in apoptosis of retinal ganglion cells (RGCs) through production of inflammatory mediators, nitric oxide (NO), and free radicals. The present study was aimed at elucidating the pathway through which hypoxia results in overproduction of NO in the immature retina, and its role in causing apoptosis of RGCs.

Methods: Wistar rats (1 day old) were exposed to hypoxia and their retinas were studied at 3 hours to 14 days after exposure.

View Article and Find Full Text PDF

Inflammation in the central nervous system (CNS) may occur as a result of trauma, infection or neurodegenerative stimuli and is characterized by activation of microglia, the resident immune cells of the CNS. Activated microglia proliferate rapidly, migrate to the site of injury or infection and elicit immune response by phagocytosis of cell debris, production of cytokines, chemokines and reactive oxygen species, and presentation of antigens to other immune cells. In addition, microglia participate in tissue repair by producing neurotrophic factors.

View Article and Find Full Text PDF

Congenital heart defects (CHD) are one of the most common defects in offspring of diabetic mothers. There is a clear association between maternal diabetes and CHD; however the underlying molecular mechanism remains unknown. We hypothesized that maternal diabetes affects with the expression of early developmental genes that regulate the essential developmental processes of the heart, thereby resulting in the pathogenesis of CHD.

View Article and Find Full Text PDF

Background: Microglia, the resident immune cells of the central nervous system (CNS), have two distinct phenotypes in the developing brain: amoeboid form, known to be amoeboid microglial cells (AMC) and ramified form, known to be ramified microglial cells (RMC). The AMC are characterized by being proliferative, phagocytic and migratory whereas the RMC are quiescent and exhibit a slow turnover rate. The AMC transform into RMC with advancing age, and this transformation is indicative of the gradual shift in the microglial functions.

View Article and Find Full Text PDF

Background: Nox-2 (also known as gp91phox), a subunit component of NADPH oxidases, generates reactive oxygen species (ROS). Nox-dependent ROS generation and nitric oxide (NO) release by microglia have been implicated in a variety of diseases in the central nervous system. Dexamethasone (Dex) has been shown to suppress the ROS production, NO release and inflammatory reaction of activated microglial cells.

View Article and Find Full Text PDF