The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.
View Article and Find Full Text PDFUnderstanding protein adsorption on the surface of nanoparticles (NPs) is crucial for determining their behavior in biological environments. Early research in this field faced challenges in producing high-quality NPs. Advancements in NP fabrication now allow for precise modifications of specific parameters, such as zeta potential.
View Article and Find Full Text PDFProstate cancer is the second most commonly diagnosed cancer in men worldwide. Despite this, current diagnostic tools are still not satisfactory, lacking sensitivity for early-stage or single-cell diagnosis. This study describes the development of small-molecule tracers for the well-known tumor marker prostate-specific membrane antigen (PSMA).
View Article and Find Full Text PDFAtomically precise metal nanoclusters (NCs) can be compositionally controlled at the single-atom level, but understanding structure-property correlations is required for tailoring specific optical properties. Here, the impact of Ni atom doping on the optical, structural, and electrochemical properties of atomically precise 1,3-benzene dithiol (BDT) protected Ag NCs is studied. The Ni-doped Ag (NiAg(BDT)) NCs, are synthesized using a co-reduction method and characterized using electrospray ionization mass spectrometry (ESI MS), ion mobility spectrometry (IMS), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFNanocarriers (NCs) play a crucial role in delivering theranostic agents to tumors, making them a pivotal focus of research. However, the persistently low delivery efficiency of engineered NCs has been a significant challenge in the advancement of nanomedicine, stirring considerable debate. Transvascular transport is a critical pathway for NC delivery from vessels to tumors, yet a comprehensive understanding of the interactions between NCs and vascular systems remains elusive.
View Article and Find Full Text PDFThis work exploits the possibility of using CdSe/ZnS quantum dot (QD)-electrodes to monitor the metabolism of living cells based on photoelectrochemical (PEC) measurements. To realize that, the PEC setup is improved with respect to an enhanced photocurrent signal, better stability, and an increased signal-to-noise ratio, but also for a better biocompatibility of the sensor surface on which cells have been grown. To achieve this, a QD-TiO heterojunction is introduced with the help of atomic layer deposition (ALD).
View Article and Find Full Text PDFWhen bulk materials are reduced in size to the nanometer scale, in particular, their surface-to-volume ratio increases drastically. We introduce some simple experiments on how to visualize this concept to students in the framework of a laboratory class. In the same context, experiments to demonstrate the consequences of this on the properties of the materials are introduced.
View Article and Find Full Text PDFThis review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation).
View Article and Find Full Text PDFEncapsulation with polymers is a well-known strategy to stabilize and functionalize nanomaterials and tune their physicochemical properties. Amphiphilic copolymers are promising in this context, but their structural diversity and complexity also make understanding and predicting their behavior challenging. This is particularly the case in complex media which are relevant for intended applications in medicine and nanobiotechnology.
View Article and Find Full Text PDFQuantitative analysis of biodistribution and clearance may improve nanoparticle development.
View Article and Find Full Text PDFX-ray fluorescence imaging (XRF-imaging) with subcellular resolution is used to study the intracellular integrity of a protein corona that was pre-formed around gold nanoparticles (AuNP). Artificial proteins engineered to obtain Gd coordination for detection by XRF-imaging were used to form the corona. Indications about the degradation of this protein corona at a cellular and subcellular level can be observed by following the Au and Gd quantities in a time and spatial-dependent manner.
View Article and Find Full Text PDFA substantial increase in engineered nanoparticles in consumer products has been observed, heightening human and environmental exposure. Inhalation represents the primary route of human exposure, necessitating a focus on lung toxicity studies. However, to avoid ethical concerns the use of in vitro models is an efficient alternative to in vivo models.
View Article and Find Full Text PDFThe uptake and the fate of Zr-based metal-organic-framework nanoparticles labeled with organic fluorophores in HeLa cells has been monitored with fluorescence detection and elemental analysis. The nanoparticles have been selected as a model system of carrier nanoparticles (here Zr-based metal-organic-framework nanoparticles) with integrated cargo molecules (here organic fluorophores), with aze that does not allow for efficient exocytosis, a material which only partly degrades under acidic conditions as present in endosomes/lysosomes, and with limited colloidal stability. Data show that, for Zr-based metal-organic-framework nanoparticles of 40 nm size as investigated here, the number of nanoparticles per cells decreases faster due to particle redistribution upon proliferation than due to nanoparticle exocytosis and that, thus, also for this system, exocytosis is not an efficient pathway for clearance of the nanoparticles from the cells.
View Article and Find Full Text PDFCuBi O has recently emerged as a promising photocathode for photo-electrochemical (PEC) water splitting. However, its fast degradation under operation currently poses a limit to its application. Here, we report a novel method to study operando the semiconductor-electrolyte interface during PEC operation by surface-sensitive high-energy X-ray scattering.
View Article and Find Full Text PDFConspectusThe ligand shells of colloidal nanoparticles (NPs) can serve different purposes. In general, they provide colloidal stability by introducing steric repulsion between NPs. In the context of biological applications, the ligand shell plays a critical role in targeting, enabling NPs to achieve specific biodistributions.
View Article and Find Full Text PDFIn recent years, much effort has been invested into developing multifunctional drug delivery systems to overcome the drawbacks of conventional carriers. Magnetic nanoparticles are not generally used as carriers but can be functionalised with several different biomolecules and their size can be tailored to present a hyperthermia response, allowing for the design of multifunctional systems which can be active in therapies. In this work, we have designed a drug carrier nanosystem based on FeO nanoparticles with large heating power and 4-amino-2-pentylselenoquinazoline as an attached drug that exhibits oxidative properties and high selectivity against a variety of cancer malignant cells.
View Article and Find Full Text PDFThe infiltration of immune cells into sites of inflammation is one key feature of immune mediated inflammatory diseases. A detailed assessment of the in vivo dynamics of relevant cell subtypes could booster the understanding of this disease and the development of novel therapies. We show in detail how advanced X-ray fluorescence imaging enables such quantitative in vivo cell tracking, offering solutions that could pave the way beyond what other imaging modalities provide today.
View Article and Find Full Text PDFThe therapeutic and diagnostic effects of nanoparticles highly depend on the efficiency of their delivery to targeted tissues, such as tumors. The size of nanoparticles, among other characteristics, plays a crucial role in determining their tissue penetration and retention. Small nanoparticles may penetrate deeper into tumor parenchyma but are poorly retained, whereas large ones are distributed around tumor blood vessels.
View Article and Find Full Text PDFPolyelectrolyte capsules (PCs) exhibit attractive superiorities in enzyme immobilization, including providing a capacious microenvironment for enzyme conformational freedom, highly effective mass transfer, and protecting enzymes from the external environment. Herein, we provide the first systemic evaluation of submicron PCs (SPCs, 500 nm) for enzyme immobilization. The catalytic kinetics results show that SPC encapsulation affected the affinities of enzymes and substrates but significantly enhanced their catalytic activity.
View Article and Find Full Text PDF