Publications by authors named "Paraiso T"

We present the optical and mechanical design of a mechanically compliant quasi-two-dimensional photonic crystal cavity formed from thin-film silicon in which a pair of linear nanoscale slots are used to create two coupled high-Q optical resonances. The optical cavity supermodes, whose frequencies are designed to lie in the 1500 nm wavelength band, are shown to interact strongly with mechanical resonances of the structure whose frequencies range from a few MHz to a few GHz. Depending upon the symmetry of the mechanical modes and the symmetry of the slot sizes, we show that the optomechanical coupling between the optical supermodes can be either linear or quadratic in the mechanical displacement amplitude.

View Article and Find Full Text PDF

We present a silicon optomechanical nanobeam design with a dynamically tunable acoustic mode at 10.2 GHz. The resonance frequency can be shifted by 90 kHz/V with an on-chip capacitor that was optimized to exert forces up to 1 µN at 10 V operation voltage.

View Article and Find Full Text PDF

Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device.

View Article and Find Full Text PDF

Non-linear interactions in coherent gases are not only at the origin of bright and dark solitons and superfluids; they also give rise to phenomena such as multistability, which hold great promise for the development of advanced photonic and spintronic devices. In particular, spinor multistability in strongly coupled semiconductor microcavities shows that the spin of hundreds of exciton-polaritons can be coherently controlled, opening the route to spin-optronic devices such as ultrafast spin memories, gates or even neuronal communication schemes. Here we demonstrate that switching between the stable spin states of a driven polariton gas can be controlled by ultrafast optical pulses.

View Article and Find Full Text PDF

Coherent manipulation of spin ensembles is a key issue in the development of spintronics. In particular, multivalued spin switching may lead to new schemes of logic gating and memories. This phenomenon has been studied with atom vapours 30 years ago, but is still awaited in the solid state.

View Article and Find Full Text PDF