: To evaluate an end-to-end pipeline for normo-fractionated prostate-only and whole-pelvic cancer treatments that requires minimal human input and generates a machine-deliverable plan as an output. : In collaboration with TheraPanacea, a treatment planning pipeline was developed that takes as its input a planning CT with organs-at-risk (OARs) and planning target volume (PTV) contours, the targeted linac machine, and the prescription dose. The primary components are (i) dose prediction by a single deep learning model for both localizations and (ii) a direct aperture VMAT plan optimization that seeks to mimic the predicted dose.
View Article and Find Full Text PDFChallenges drive the state-of-the-art of automated medical image analysis. The quantity of public training data that they provide can limit the performance of their solutions. Public access to the training methodology for these solutions remains absent.
View Article and Find Full Text PDFIonizing radiation can have a wide range of impacts on tumor-immune interactions, which are being studied with the greatest interest and at an accelerating pace by the medical community. Despite its undeniable immunostimulatory potential, it clearly appears that radiotherapy as it is prescribed and delivered nowadays often alters the host's immunity toward a suboptimal state. This may impair the full recovery of a sustained and efficient antitumor immunosurveillance posttreatment.
View Article and Find Full Text PDFBackground: Radiotherapy dose predictions have been trained with data from previously treated patients of similar sites and prescriptions. However, clinical datasets are often inconsistent and do not contain the same number of organ at risk (OAR) structures. The effects of missing contour data in deep learning-based dose prediction models have not been studied.
View Article and Find Full Text PDFPurpose/objectives: An artificial intelligence-based pseudo-CT from low-field MR images is proposed and clinically evaluated to unlock the full potential of MRI-guided adaptive radiotherapy for pelvic cancer care.
Materials And Method: In collaboration with TheraPanacea (TheraPanacea, Paris, France) a pseudo-CT AI-model was generated using end-to-end ensembled self-supervised GANs endowed with cycle consistency using data from 350 pairs of weakly aligned data of pelvis planning CTs and TrueFisp-(0.35T)MRIs.
The use of multi-modality imaging technologies such as CT, MRI, and PET imaging is state of the art for radiation therapy treatment planning. Except for a limited number of low magnetic field MR scanners the majority of such imaging technologies can only image the patient in a recumbent position. Delivering radiation therapy treatments with the patient in an upright orientation has many benefits and several companies are now developing upright patient positioners combined with upright diagnostic helical CT scanners to facilitate upright radiation therapy treatments.
View Article and Find Full Text PDFBackground And Purpose: MR-guided radiotherapy (MRgRT) online plan adaptation accounts for tumor volume changes, interfraction motion and thus allows daily sparing of relevant organs at risk. Due to the high interfraction variability of bladder and rectum, patients with tumors in the pelvic region may strongly benefit from adaptive MRgRT. Currently, fast automatic annotation of anatomical structures is not available within the online MRgRT workflow.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease characterized by the appearance of focal lesions across the central nervous system. The discrimination of acute from chronic MS lesions may yield novel biomarkers of inflammatory disease activity which may support patient management in the clinical setting and provide endpoints in clinical trials. On a single timepoint and in the absence of a prior reference scan, existing methods for acute lesion detection rely on the segmentation of hyperintense foci on post-gadolinium T1-weighted magnetic resonance imaging (MRI), which may underestimate recent acute lesion activity.
View Article and Find Full Text PDFWhile radiomics analysis has been applied for localized cancer disease, its application to the metastatic setting involves a non-exhaustive lesion subsampling strategy which may sidestep the intrapatient tumoral heterogeneity, hindering the reproducibility and the therapeutic response performance. Our aim was to evaluate if radiomics features can capture intertumoral intrapatient heterogeneity, and the impact of tumor subsampling on the computed heterogeneity. To this end, We delineated and extracted radiomics features of all visible tumors from single acquisition pre-treatment computed tomography of patients with metastatic lung cancer (cohort L) and confirmed our results on a larger cohort of patients with metastatic melanoma (cohort M).
View Article and Find Full Text PDFThe Apparent Diffusion Coefficient (ADC) is considered an importantimaging biomarker contributing to the assessment of tissue microstructure and pathophy- siology. It is calculated from Diffusion-Weighted Magnetic Resonance Imaging (DWI) by means of a diffusion model, usually without considering any motion during image acquisition. We propose a method to improve the computation of the ADC by coping jointly with both motion artifacts in whole-body DWI (through group-wise registration) and possible instrumental noise in the diffusion model.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
April 2023
Purpose: The purpose of this study was to determine whether a single reconstruction kernel or both high and low frequency kernels should be used for training deep learning models for the segmentation of diffuse lung disease on chest computed tomography (CT).
Materials And Methods: Two annotated datasets of COVID-19 pneumonia (323,960 slices) and interstitial lung disease (ILD) (4,284 slices) were used. Annotated CT images were used to train a U-Net architecture to segment disease.
Purpose: To develop a deep learning algorithm for the automatic assessment of the extent of systemic sclerosis (SSc)-related interstitial lung disease (ILD) on chest CT images.
Materials And Methods: This retrospective study included 208 patients with SSc (median age, 57 years; 167 women) evaluated between January 2009 and October 2017. A multicomponent deep neural network (AtlasNet) was trained on 6888 fully annotated CT images (80% for training and 20% for validation) from 17 patients with no, mild, or severe lung disease.
Radiol Cardiothorac Imaging
December 2020
Purpose: To develop radiomics-based CT scores for assessing lung disease severity and exacerbation risk in adult patients with cystic fibrosis (CF).
Materials And Methods: This two-center retrospective observational study was approved by an institutional ethics committee, and the need for patient consent was waived. A total of 215 outpatients with CF referred for unenhanced follow-up chest CT were evaluated in two different centers between January 2013 and December 2016.
IEEE J Biomed Health Inform
June 2021
We investigate the use of recent advances in deep learning and propose an end-to-end trainable multi-instance convolutional neural network within a mixture-of-experts formulation that combines information from two types of data-images and clinical attributes-for the diagnosis of lymphocytosis. The convolutional network learns to extract meaningful features from images of blood cells using an embedding level approach and aggregates them. Moreover, the mixture-of-experts model combines information from these images as well as clinical attributes to form an end-to-end trainable pipeline for diagnosis of lymphocytosis.
View Article and Find Full Text PDFBackground Longitudinal follow-up of interstitial lung diseases (ILDs) at CT mainly relies on the evaluation of the extent of ILD, without accounting for lung shrinkage. Purpose To develop a deep learning-based method to depict worsening of ILD based on lung shrinkage detection from elastic registration of chest CT scans in patients with systemic sclerosis (SSc). Materials and Methods Patients with SSc evaluated between January 2009 and October 2017 who had undergone at least two unenhanced supine CT scans of the chest and pulmonary function tests (PFTs) performed within 3 months were retrospectively included.
View Article and Find Full Text PDFArtificial intelligence is a hot topic in medical imaging. The development of deep learning methods and in particular the use of convolutional neural networks (CNNs), have led to substantial performance gain over the classic machine learning techniques. Multiple usages are currently being evaluated, especially for thoracic imaging, such as such as lung nodule evaluation, tuberculosis or pneumonia detection or quantification of diffuse lung diseases.
View Article and Find Full Text PDFRelevance and penetration of machine learning in clinical practice is a recent phenomenon with multiple applications being currently under development. Deep learning-and especially convolutional neural networks (CNNs)-is a subset of machine learning, which has recently entered the field of thoracic imaging. The structure of neural networks, organized in multiple layers, allows them to address complex tasks.
View Article and Find Full Text PDF