Publications by authors named "Paquet D"

Article Synopsis
  • * In studies using a mouse model lacking the NPC1 protein in immune cells, researchers found significant changes in microglial lipid profiles, increased microglial activity, and symptoms resembling NPC disease, such as lifespan reduction and motor issues.
  • * Monitoring translocator protein (TSPO) levels in the blood may be useful for assessing NPC disease progression and treatment response, as shown by changes in TSPO levels following a specific therapy that appeared beneficial for patients.
View Article and Find Full Text PDF

DNA is folded into higher-order structures that shape and are shaped by genome function. The role of long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNA Pol II) during neural lineage commitment.

View Article and Find Full Text PDF

Drug discovery is a generally inefficient and capital-intensive process. For neurodegenerative diseases (NDDs), the development of novel therapeutics is particularly urgent considering the long list of late-stage drug candidate failures. Although our knowledge on the pathogenic mechanisms driving neurodegeneration is growing, additional efforts are required to achieve a better and ultimately complete understanding of the pathophysiological underpinnings of NDDs.

View Article and Find Full Text PDF

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution.

View Article and Find Full Text PDF

Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging.

View Article and Find Full Text PDF

Mammalian genomes fold into tens of thousands of long-range loops, but their functional role and physiologic relevance remain poorly understood. Here, using human post-mitotic neurons with rare familial Alzheimer's disease (FAD) mutations, we identify hundreds of reproducibly dysregulated genes and thousands of miswired loops prior to amyloid accumulation and tau phosphorylation. Single loops do not predict expression changes; however, the severity and direction of change in mRNA levels and single-cell burst frequency strongly correlate with the number of FAD-gained or -lost promoter-enhancer loops.

View Article and Find Full Text PDF

DNA is folded into higher-order structures that shape and are shaped by genome function. The role for long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNAPolII) during neural lineage commitment.

View Article and Find Full Text PDF

Dilatometric experiments were conducted with the main purpose of measuring the transformation-induced coefficients of 13% chromium and 4% nickel, which are martensitic stainless steel base and filler materials used for hydraulic turbine manufacturing. To this end, a set of experiments was conducted in a quenching dilatometer equipped with loading capabilities. The measurement system was further improved by means of modified pushrods to allow for the use of specimens with geometries that are compliant with tensile test standards.

View Article and Find Full Text PDF

Background: With the emergence of microglia-modulating therapies there is an urgent need for reliable biomarkers to evaluate microglial activation states.

Methods: Using mouse models and human induced pluripotent stem cell-derived microglia (hiMGL), genetically modified to yield the most opposite homeostatic (TREM2-knockout) and disease-associated (GRN-knockout) states, we identified microglia activity-dependent markers. Non-targeted mass spectrometry was used to identify proteomic changes in microglia and cerebrospinal fluid (CSF) of Grn- and Trem2-knockout mice.

View Article and Find Full Text PDF

Background: With the emergence of microglia-modulating therapies there is an urgent need for reliable biomarkers to evaluate microglial activation states.

Methods: Using mouse models and human induced pluripotent stem cell-derived microglia (hiMGL), which were genetically modified to yield the most opposite homeostatic ( knockout) and disease-associated ( -knockout) states, we identified microglia activity-dependent markers. Non-targeted mass spectrometry was used to identify changes in microglial and cerebrospinal (CSF) proteome of - and -knockout mice.

View Article and Find Full Text PDF

Scouts search for "sleepers" who may be initially overlooked but ultimately exceed expectations. The psychological characteristics of those players are often neglected because they are difficult to observe, but hold promise to identify sleepers given for example the self-regulation and perceptual-cognitive skills that those developing players might need to flourish. The aim of this study was to examine whether sleepers could be retrospectively identified using psychological characteristics.

View Article and Find Full Text PDF

Human-induced-pluripotent-stem-cell (hiPSC)-derived neurons are valuable for investigating brain physiology and disease. Here, we present a protocol to differentiate hiPSCs into cortical neurons with high yield and purity. We describe neural induction via dual-SMAD inhibition, followed by spot-based differentiation to provide high quantities of neural precursors.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML.

View Article and Find Full Text PDF

Imbalances in the amounts of amyloid-β peptides (Aβ) generated by the membrane proteases β- and γ-secretase are considered as a trigger of Alzheimer's disease (AD). Cell-free studies of γ-secretase have shown that increasing membrane thickness modulates Aβ generation but it has remained unclear if these effects are translatable to cells. Here we show that the very long-chain fatty acid erucic acid (EA) triggers acyl chain remodeling in AD cell models, resulting in substantial lipidome alterations which included increased esterification of EA in membrane lipids.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.

View Article and Find Full Text PDF

Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g.

View Article and Find Full Text PDF

Background: It is predicted that approximately two billion tourist trips to foreign countries will be taken worldwide each year by 2030. Germany has long been among the most active countries in tourism. The frequency of illness among persons returning from developing and newly industrialized countries is 43-79%.

View Article and Find Full Text PDF

Haploinsufficiency of the progranulin (PGRN)-encoding gene (GRN) causes frontotemporal lobar degeneration (GRN-FTLD) and results in microglial hyperactivation, TREM2 activation, lysosomal dysfunction, and TDP-43 deposition. To understand the contribution of microglial hyperactivation to pathology, we used genetic and pharmacological approaches to suppress TREM2-dependent transition of microglia from a homeostatic to a disease-associated state. Trem2 deficiency in Grn KO mice reduced microglia hyperactivation.

View Article and Find Full Text PDF

Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC).

View Article and Find Full Text PDF

The recent CRISPR revolution has provided researchers with powerful tools to perform genome editing in a variety of organisms. However, recent reports indicate widespread occurrence of unintended CRISPR-induced on-target effects (OnTEs) at the edited site in mice and human induced pluripotent stem cells (iPSCs) that escape standard quality controls. By altering gene expression of targeted or neighbouring genes, OnTEs can severely affect phenotypes of CRISPR-edited cells and organisms and thus lead to data misinterpretation, which can undermine the reliability of CRISPR-based studies.

View Article and Find Full Text PDF

Background: In 2019, 1.5 billion international tourist trips were counted worldwide. Germany, with 70.

View Article and Find Full Text PDF

CRISPR genome editing is a promising tool for translational research but can cause undesired editing outcomes, both on target at the edited locus and off target at other genomic loci. Here, we investigate the occurrence of deleterious on-target effects (OnTEs) in human stem cells after insertion of disease-related mutations by homology-directed repair (HDR) and gene editing using non-homologous end joining (NHEJ). We identify large, mono-allelic genomic deletions and loss-of-heterozygosity escaping standard quality controls in up to 40% of edited clones.

View Article and Find Full Text PDF

Induced pluripotent stem-cell-based models enable investigation of pathomechanisms in disease-relevant human brain cell types and therefore offer great potential for mechanistic and translational studies on neurodegenerative disorders, such as Alzheimer's disease (AD). While current AD models allow analysis of early disease phenotypes including Aβ accumulation and Tau hyperphosphorylation, they still fail to fully recapitulate later hallmarks such as protein aggregation and neurodegeneration. This impedes the identification of pathomechanisms and novel therapeutic targets.

View Article and Find Full Text PDF

Herpes simplex virus-1 (HSV-1) encephalitis (HSE) is typically sporadic. Inborn errors of TLR3- and DBR1-mediated central nervous system cell-intrinsic immunity can account for forebrain and brainstem HSE, respectively. We report five unrelated patients with forebrain HSE, each heterozygous for one of four rare variants of SNORA31, encoding a small nucleolar RNA of the H/ACA class that are predicted to direct the isomerization of uridine residues to pseudouridine in small nuclear RNA and ribosomal RNA.

View Article and Find Full Text PDF