Pospiviroids infect a wide range of plant species, and many pospiviroids can be transmitted to potato and tomato. Pospiviroids continue to be a major production constraint as well as of quarantine concern for the movement of germplasm, and are regulated in several countries/regions. The USDA APHIS issued a federal order requiring all imported tomato and pepper seeds be certified free of six pospiviroids of quarantine significance.
View Article and Find Full Text PDFPotato mop-top virus (PMTV) is an emerging viral pathogen that causes tuber necrosis in potatoes. PMTV is composed of three single-stranded RNA segments: RNA1 encodes RNA-dependent RNA polymerase, RNA2 contains the coat protein (CP), and RNA3 harbors a triple gene block (TGB 1, TGB2, and TGB3). CP plays a role in viral transmission, while TGB is known to facilitate cell-to-cell and long-distance systemic movement.
View Article and Find Full Text PDFTomato mosaic virus (ToMV), an economically important virus that affects a wide range of crops, is highly contagious, and its transmission is mediated by mechanical means, and through contaminated seeds or planting materials, making its management challenging. To contain its wide distribution, early and accurate detection of infection is required. A survey was conducted between January and May, 2023 in major tomato growing counties in Kenya, namely, Baringo, Kajiado, Kirinyaga and Laikipia, to establish ToMV disease incidence and to collect samples for optimization of the reverse transcription loop-mediated isothermal amplification assay (RT-LAMP) assay.
View Article and Find Full Text PDFIntroduction: Potato ( L.), the fourth most important food crop in the world, is affected by several viral pathogens with potato virus Y (PVY) having the greatest economic impact. At least nine biologically distinct variants of PVY are known to infect potato.
View Article and Find Full Text PDFChilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to .
View Article and Find Full Text PDFPowdery scab disease, caused by the soilborne protist f. sp. , poses a major constraint to potato production worldwide.
View Article and Find Full Text PDFPotato virus Y (PVY) is an economically important plant pathogen that reduces the productivity of several host plants. To develop PVY-resistant cultivars, it is essential to identify the plant-PVY interactome and decipher the biological significance of those molecular interactions. We performed a yeast two-hybrid (Y2H) screen of cDNA library using PVY-encoded NIa-pro as the bait.
View Article and Find Full Text PDFPhytopathology
September 2023
Plant viruses infect a wide range of commercially important crop plants and cause significant crop production losses worldwide. Numerous alterations in plant physiology related to the reprogramming of gene expression may result from viral infections. Although conventional integrated pest management-based strategies have been effective in reducing the impact of several viral diseases, continued emergence of new viruses and strains, expanding host ranges, and emergence of resistance-breaking strains necessitate a sustained effort toward the development and application of new approaches for virus management that would complement existing tactics.
View Article and Find Full Text PDFForster resonance energy transfer (FRET) is an efficient method to visualize the protein-protein interaction in living cells. This technique is based on transfer of energy between two different fluorophores that are fused to two interacting proteins. In this chapter, we described the FRET assay to visualize the protein-protein interaction in plant cells.
View Article and Find Full Text PDFBimolecular fluorescence complementation (BiFC) assay is a method to visualize the protein-protein interaction in living cells. This technique is based on ability of the non-fluorescent fragment of fluorescent protein to form fluorescent complex when they are fused to two interacting proteins. In this chapter, we describe the widely used split yellow fluorescent protein (YFP) system to visualize the protein-protein interaction in plant cells.
View Article and Find Full Text PDFPull-down assay is a technique to analyze direct protein-protein interaction under in vitro condition. Also, this technique is appropriate for investigating the direct interaction between two purified proteins. Glutathione-s-transferase (GST) protein is a widely used affinity tag for affinity purification.
View Article and Find Full Text PDFAffinity purification-Mass spectroscopy (AP-MS) is a biochemical technique to identify the novel protein-protein interaction that occurs in the most relevant physiological conditions, whereas co-immunoprecipitation (Co-IP) is used to study the interaction between two known protein partners that are expressed in the native physiological conditions. Both AP-MS and Co-IP techniques are based on the ability of the interacting partners to pull-down with protein of interest. In this chapter, we have explained the AP-MS and Co-IP methods to study protein-protein interactions in the plant cells.
View Article and Find Full Text PDFProtein-protein interactions are specific and direct physical contact between two or more proteins, and the interaction involves hydrogen bonding, electrostatic forces, and hydrophobic forces. Majority of biological processes in the living cell are executed by proteins, and any particular protein function is regulated by numerous other proteins. Thus, knowledge of protein-protein interaction is necessary to understand the biological processes.
View Article and Find Full Text PDFOnion thrips (Thrips tabaci Lindeman, Thysanoptera: Thripidae) causes severe damage to many horticultural and agronomic crops worldwide. It also acts as a vector of several plant viruses. T.
View Article and Find Full Text PDFPotato () is affected by several viral pathogens with the most economically damaging being potato virus Y (PVY). At least nine biologically distinct variants of PVY are known to attack potato, with necrotic types named PVY and PVY being the most recent additions to the list. So far, the molecular plant-virus interactions underlying this pathogenicity are not fully understood.
View Article and Find Full Text PDFWhitefly-transmitted begomoviruses infect and damage a wide range of food, feed, and fiber crops worldwide. Some of these viruses are associated with betasatellite molecules that are known to enhance viral pathogenesis. In this study, we investigated the function of a novel βV1 protein encoded by radish leaf curl betasatellite (RaLCB) by overexpressing the protein using potato virus X (PVX)-based virus vector in .
View Article and Find Full Text PDFPotato mop-top virus (PMTV) is considered an emerging threat to potato production in the United States. PMTV is transmitted by a soil-borne protist, Spongospora subterranean. Rapid, accurate, and sensitive detection of PMTV in leaves and tubers is an essential component in PMTV management program.
View Article and Find Full Text PDFTospoviruses infect numerous crop species worldwide, causing significant losses throughout the supply chain. As a defence mechanism, plants use RNA interference (RNAi) to generate virus-derived small-interfering RNAs (vsiRNAs), which target viral transcripts for degradation. Small RNA sequencing and in silico analysis of capsicum and infected by tomato spotted wilt virus (TSWV) or capsicum chlorosis virus (CaCV) demonstrated the presence of abundant vsiRNAs, with host-specific differences evident for each pathosystem.
View Article and Find Full Text PDFWe report the discovery of a Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) isolate, named SsHADV1_PO, from the fungus Penicillium olsonii isolated from Washington state, USA. The genome of SsHADV1_PO is 2,166 bp and contains two open reading frames, with more than 98% nucleotide identity with respect to reported SsHADV-1 isolates.
View Article and Find Full Text PDFCroton yellow vein mosaic virus (CYVMV), a species in the genus , is a prolific monopartite begomovirus in the Indian sub-continent. CYVMV infects multiple crop plants to cause leaf curl disease. Plants have developed host RNA silencing mechanisms to defend the threat of viruses, including CYVMV.
View Article and Find Full Text PDFThis communication summarizes the presentations given at the 1st international conference of the World Society for Virology (WSV) held virtually during 16-18 June 2021, under the theme of tackling global viral epidemics. The purpose of this biennial meeting is to foster international collaborations and address important viral epidemics in different hosts. The first day included two sessions exclusively on SARS-CoV-2 and COVID-19.
View Article and Find Full Text PDFTobacco rattle virus (TRV) is an important soil-borne virus of potato that is transmitted by stubby-root nematodes. TRV causes corky ringspot, a tuber disease of economic importance to potato production. Utilizing protein-coding regions of the whole genome and a range of computational tools, the genetic diversity, and population structure of TRV isolates from several potato-growing regions (Colorado, Idaho, Indiana, Minnesota, Nebraska, North Dakota, and Washington State) in the USA were determined.
View Article and Find Full Text PDFIris yellow spot, caused by Iris yellow spot orthotospovirus (IYSV) (Genus: , Family: ), is an important disease of spp. The complete N gene sequences of 142 IYSV isolates of curated sequence data from GenBank were used to determine the genetic diversity and evolutionary pattern. restriction fragment length polymorphism (RFLP) analysis, codon-based maximum likelihood studies, genetic differentiation and gene flow within the populations of IYSV genotypes were investigated.
View Article and Find Full Text PDFThrips-transmitted tomato spotted wilt orthotospovirus (TSWV) continues to be a constraint to peanut, pepper, tobacco, and tomato production in Georgia and elsewhere. TSWV is being managed by an integrated disease management strategy that includes a combination of cultural practices, vector management, and growing virus-resistant varieties where available. We used a non-transgenic strategy to induce RNA interference (RNAi)-mediated resistance in tobacco () plants against TSWV.
View Article and Find Full Text PDF