A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure.
View Article and Find Full Text PDFThe aim of the study was to clarify the role of the interplay between hypertension and the renin-angiotensin system (RAS) in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. We hypothesized that in the late phase of hypertension with already developed signs of end-organ damage, inappropriate RAS activation could impair cardiac tolerance to I/R injury. Experiments were performed in male transgenic rats with inducible hypertension.
View Article and Find Full Text PDFBackground: An altered sympathetic nervous system is implicated in many cardiac pathologies, ranging from sudden infant death syndrome to common diseases of adulthood such as hypertension, myocardial ischemia, cardiac arrhythmias, myocardial infarction, and heart failure. Although the mechanisms responsible for disruption of this well-organized system are the subject of intensive investigations, the exact processes controlling the cardiac sympathetic nervous system are still not fully understood. A conditional knockout of the Hif1a gene was reported to affect the development of sympathetic ganglia and sympathetic innervation of the heart.
View Article and Find Full Text PDFGliflozins (inhibitors of sodium-glucose cotransporter 2) show many beneficial actions beyond their antidiabetic effects. The underlying mechanisms of these additional protective effects are still not well understood, especially under non-diabetic conditions. Therefore, we analyzed the effects of empagliflozin in young (3-month-old) and adult (12-month-old) male spontaneously hypertensive rats (SHR) expressing human C-reactive protein (CRP) in the liver.
View Article and Find Full Text PDFThe new antidiabetic drugs, gliflozins, inhibit sodium-glucose transporter-2 in renal proximal tubules promoting glucose and sodium excretion. This leads not only to a significant improvement of glucose control but also to the reduction of blood pressure and body weight in both diabetic patients and experimental models. We examined whether these beneficial effects can also be achieved in a non-diabetic hypertensive model, namely in Ren-2 transgenic rats (TGR).
View Article and Find Full Text PDFIncreased level of C-reactive protein (CRP) is a risk factor for cardiovascular diseases, including myocardial infarction and hypertension. Here, we analyzed the effects of CRP overexpression on cardiac susceptibility to ischemia/reperfusion (I/R) injury in adult spontaneously hypertensive rats (SHR) expressing human CRP transgene (SHR-CRP). Using an in vivo model of coronary artery occlusion, we found that transgenic expression of CRP predisposed SHR-CRP to repeated and prolonged ventricular tachyarrhythmias.
View Article and Find Full Text PDFWe investigated the role of the interaction between hypertension and the renin-angiotensin system in the pathophysiology of myocardial ischemia/reperfusion injury. We hypothesized that in the early phase of angiotensin II (ANG II)-dependent hypertension with developed left ventricular hypertrophy, cardioprotective mechanism(s) are fully activated. The experiments were performed in transgenic rats with inducible hypertension, noninduced rats served as controls.
View Article and Find Full Text PDFThe main aim was to find out whether long-lasting stepwise exposure to extreme hypoxia affects left ventricular (LV) geometry and systolic function. Adult male rats were exposed to intermittent hypobaric hypoxia (8 h/day) with increasing altitude in steps of 1000 m every 3 weeks up to 8000 m. While the LV cavity diastolic diameter did not change over the whole range of hypoxia, the wall thickness increased significantly at the altitude of 8000 m.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2019
The molecular mechanisms regulating sympathetic innervation of the heart during embryogenesis and its importance for cardiac development and function remain to be fully elucidated. We generated mice in which conditional knockout (CKO) of the gene encoding the transcription factor hypoxia-inducible factor 1α (HIF-1α) is mediated by an transgene expressed in the cardiac outflow tract, right ventricle and atrium, pharyngeal mesoderm, peripheral neurons, and hindlimbs. These mice demonstrate significantly decreased perinatal survival and impaired left ventricular function.
View Article and Find Full Text PDFEpoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio- and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and -AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation.
View Article and Find Full Text PDFBackground: Epidemiological studies show that maternal diabetes predisposes offspring to cardiovascular and metabolic disorders. However, the precise mechanisms for the underlying penetrance and disease predisposition remain poorly understood. We examined whether hypoxia-inducible factor 1 alpha, in combination with exposure to a diabetic intrauterine environment, influences the function and molecular structure of the adult offspring heart.
View Article and Find Full Text PDFChronic hypoxia and exercise are natural stimuli that confer sustainable cardioprotection against ischemia-reperfusion (I/R) injury, but it is unknown whether they can act in synergy to enhance ischemic resistance. Inflammatory response mediated by tumor necrosis factor-α (TNF-α) plays a role in the infarct size limitation by continuous normobaric hypoxia (CNH), whereas exercise is associated with anti-inflammatory effects. This study was conducted to determine if exercise training performed under conditions of CNH (12% O) affects myocardial ischemic resistance with respect to inflammatory and redox status.
View Article and Find Full Text PDFTMEM70, a 21-kDa protein localized in the inner mitochondrial membrane, has been shown to facilitate the biogenesis of mammalian F1Fo ATP synthase. Mutations of the TMEM70 gene represent the most frequent cause of isolated ATP synthase deficiency resulting in a severe mitochondrial disease presenting as neonatal encephalo-cardiomyopathy (OMIM 604273). To better understand the biological role of this factor, we generated Tmem70-deficient mice and found that the homozygous Tmem70-/- knockouts exhibited profound growth retardation and embryonic lethality at ∼9.
View Article and Find Full Text PDFAdaptation to continuous normobaric hypoxia (CNH) protects the heart against ischemia/reperfusion injury but much less is known about its potential therapeutic effects. The aim of this study was to find out whether post-infarction exposure to CNH can attenuate the progression of heart failure. Ten-week-old male rats underwent myocardial infarction (MI) or sham operation.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) plays a role in metabolic regulation under stress conditions, and inadequate AMPK signaling may be also involved in aging process. The aim was to find out whether AMPK alpha2-subunit deletion affects heart function and ischemic tolerance of adult and aged mice. AMPK alpha2(-/-) (KO) and wild type (WT) female mice were compared at the age of 6 and 18 months.
View Article and Find Full Text PDFCommon inbred strains of the laboratory rat can be divided into four major mitochondrial DNA (mtDNA) haplotype groups represented by the BN, F344, LEW, and SHR strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. F344 mtDNA by comparing the SHR vs.
View Article and Find Full Text PDFBackground: Diabetic cardiomyopathy is associated with a number of functional and structural pathological changes such as left ventricular dysfunction, cardiac remodeling, and apoptosis. The primary cause of diabetic cardiomyopathy is hyperglycemia, the metabolic hallmark of diabetes. Recent studies have shown that a diabetic environment suppresses hypoxia-inducible factor (HIF)-1α protein stability and function.
View Article and Find Full Text PDFDysfunction or abnormalities in the regulation of fatty acid translocase Cd36, a multifunctional membrane protein participating in uptake of long-chain fatty acids, has been linked to the development of heart diseases both in animals and humans. We have previously shown that the Cd36 transgenic spontaneously hypertensive rat (SHR-Cd36), with a wild type Cd36, has higher susceptibility to ischemic ventricular arrhythmias when compared to spontaneously hypertensive rat (SHR) carrying a mutant Cd36 gene, which may have been related to increased β-adrenergic responsiveness of these animals (Neckar et al., 2012 Physiol.
View Article and Find Full Text PDFThe purpose of the present study was to assess the impact of brief daily reoxygenation during adaptation to chronic continuous hypoxia (CCH) on protective cardiac phenotype. Adult male Wistar rats were kept at CCH (10% oxygen) for 5, 15 or 30 days; a subgroup of animals was exposed to room air daily for a single 60-min period. While 5 days of CCH did not affect myocardial infarction induced by 20-min coronary artery occlusion and 3-h reperfusion, 15 days reduced infarct size from 62% of the area at risk in normoxic controls to 52%, and this protective effect was more pronounced after 30 days (41%).
View Article and Find Full Text PDFTransthoracic echocardiography (TTE) has become an important modality for the assessment of cardiac structure and function in animal experiments. The acquisition of echocardiographic images in rats requires sedation/anesthesia to keep the rats immobile. Commonly used anesthetic regimens include intraperitoneal or inhalational application of various anesthetics.
View Article and Find Full Text PDFThe present study was undertaken to evaluate the effects of chronic treatment with c-AUCB {cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid}, a novel inhibitor of sEH (soluble epoxide hydrolase), which is responsible for the conversion of biologically active EETs (epoxyeicosatrienoic acids) into biologically inactive DHETEs (dihydroxyeicosatrienoic acids), on BP (blood pressure) and myocardial infarct size in male heterozygous TGR (Ren-2 renin transgenic rats) with established hypertension. Normotensive HanSD (Hannover Sprague-Dawley) rats served as controls. Myocardial ischaemia was induced by coronary artery occlusion.
View Article and Find Full Text PDFCD36 fatty acid translocase plays a key role in supplying heart with its major energy substrate, long-chain fatty acids (FA). Previously, we found that the spontaneously hypertensive rat (SHR) harbors a deletion variant of Cd36 gene that results in reduced transport of long-chain FA into cardiomyocytes and predisposes the SHR to cardiac hypertrophy. In the current study, we analyzed the effects of mutant Cd36 on susceptibility to ischemic ventricular arrhythmias and myocardial infarction in adult SHR-Cd36 transgenic rats with wild-type Cd36 compared with age-matched SHR controls.
View Article and Find Full Text PDFLeft ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p.
View Article and Find Full Text PDFInhalational anesthetic-induced preconditioning (APC) has been shown to reduce infarct size and attenuate contractile dysfunction caused by myocardial ischemia. Only a few studies have reported the effects of APC on arrhythmias during myocardial ischemia-reperfusion injury, focusing exclusively on reperfusion. Accordingly, the aim of the present study was to examine the influence of APC on ventricular arrhythmias evoked by regional no-flow ischemia.
View Article and Find Full Text PDF