Publications by authors named "Papita Das"

In this study, efficiencies of eight indigenous plants of Baishnabghata Patuli Township (BPT), southeast Kolkata, India, were explored as green barrier species and potentials of plant leaves were exploited for biomonitoring of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The present work focused on studying PM capturing abilities (539.32-2766.

View Article and Find Full Text PDF

Electronegative Fluorine has great reactivity and it exists as organic or inorganic fluoride compounds. Biosorption feasibility of fluoride onto alginate-cellulose composites was investigated in this study. Extracted cellulose has been utilized to synthesize calcium alginate impregnated composite beads for fluoride remediation process in batch and fluidized-bed reactors.

View Article and Find Full Text PDF

Attempts have been made in the present study for ascertaining the concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) using passive biosamplers in preference to conventional air sampling methods. Mechanical stirring, sonication, Soxhlet technique and microwave-assisted Soxhlet extraction (MASE) were employed to extract PAHs from an evergreen plant (Murraya paniculata) leaves (having long life-span) sampled from polluted places of South Kolkata, India, with dense population and heavy traffic. Effects of extraction methods and operational parameters (solvent and time) on the recovery levels of PAHs were also investigated.

View Article and Find Full Text PDF

In this study, the heavy metal exposure risk model was employed to assess the exposure risk to a predominantly herbivore waterfowl, Northern Pintail, wintering in two wetland habitats in the Purulia district of West Bengal, located on overlapping Central Asian Flyway (CAF) and East Asian-Australasian Flyway (EAAF). Both wetlands were important staging and roosting grounds for migratory waterfowl for ages. The exposure model was used to quantify the risk of exposure to metals through oral ingestion.

View Article and Find Full Text PDF

Titanium dioxide (TiO) photocatalyst has gained constant interest in the treatment of wastewater because of its greater stability, lower cost, low-toxicity, high efficiency, and more reactivity under UV radiation. On the other hand, Graphene oxide (GO) possesses high electron mobility, and therefore when GO is combined with TiO the photocatalytic activity of TiO is increased. In this study, nano-composite was synthesized in a hydrothermal reactor using two types of TiO nanoparticles (TiO consisting of a mixture of rutile and anatase phase (Type 1) and bioreduced TiO (Type 2)) and the efficiency of both the TiO-GO nanocomposite to remove the drug Carbamazepine (CBZ) was investigated.

View Article and Find Full Text PDF

The study represents in vitro chemometric approach for assessing the heavy metal pollution in Indian Sundarbans. Physio-chemical and elemental characterisation of the sediment samples of Indian Sundarbans had shown high enrichments of toxic metal ions. It was characterised by elevated enrichment factors (2.

View Article and Find Full Text PDF

The present investigation attempted to examine the defluoridation feasibility onto the extracted nanocellulose/PVA polymer composites. Nanocellulose were derived from sugarcane bagasse and blended with PVA (polyvinyl alcohol) polymer matrix. The defluoridation potential of nanocellulose/PVA was observed to be significantly dependent on the various operational factors including pH, time interval, etc.

View Article and Find Full Text PDF

In the present study, a combined approach of ozone-based advanced oxidation and adsorption by activated char was employed for the treatment of a pharmaceutical industrial effluent. Ozone is a selective oxidant, but the addition of HO generated hydroxyl radicals, which is a non-selective stronger oxidant than ozone. The effluent obtained from the pharmaceutical industry mainly contained anti-cancer drugs, anti-psychotic drugs, and some pain killers.

View Article and Find Full Text PDF

In this study, carbonized material was produced using sodium hydroxide treated Sugar cane bagasse (SB), and synthesized materials ware used to prepare Sodium Alginate/SBAC composite beads which were further used as an adsorbent to remove malachite green dye (MG) present in water. Physiochemical characteristics of composite beads were analyzed using FTIR, SEM, TGA, and BET. Adsorption equilibrium data showed excellent fit to the Freundlich model (R = 0.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons having two or more fused aromatic rings, released from natural (like forest fires and volcanic eruption) as well as man-made sources (like burning of fossil fuel & wood, automobile emission). They are persistent priority pollutants and continue to last for a long time in the environment causing severe damage to human health owing to their genotoxicity, mutagenicity and carcinogenicity. The study of PAHs in environment has therefore aroused a global concern.

View Article and Find Full Text PDF

The current study emphasises on sorptive expulsion of phenol from aqueous solution using ortho-phosphoric acid (STAC-O) and sulphuric acid (STAC-H)-activated biochar derived from spent tea waste. STAC-O and STAC-H were instrumentally anatomised using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), BET surface area and thermal gravimetric analyser. Equilibrium and kinetic data were implemented for the investigative parametric batch study to prospect the influence of adsorbent dosage, contact time, initial concentration and pH for eradication of phenol from aqueous solution.

View Article and Find Full Text PDF

This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent.

View Article and Find Full Text PDF

The present study investigated the removal of azo dye (crystal violet) by adsorption (using a low-cost adsorbent fly ash), biodegradation (using bacterial species, sp.), and an integrated approach of sorption coupled with biodegradation (using fly ash immobilized with sp.) on a comparative scale.

View Article and Find Full Text PDF

Fluoride has both detrimental and beneficial effects on living beings depending on the concentration and consumption periods. The study presented in this article investigated the feasibility of using neem oil phenolic resin treated lignocellulosic bio-sorbents for fluoride removal from water through fixed bed column study. Results indicated that treated bio-sorbents could remove fluoride both from synthetic and groundwater with variable bed depth, flow rate, fluoride concentration and column diameter.

View Article and Find Full Text PDF

Gradual increase in concentration of carbon dioxide (CO) in the atmosphere due to the various anthropogenic interventions leading to significant alteration in the global carbon cycle has been a subject of worldwide attention and matter of potential research over the last few decades. In these alarming scenario microalgae seems to be an attractive medium for capturing the excess CO present in the atmosphere generated from different sources such as power plants, automobiles, volcanic eruption, decomposition of organic matters and forest fires. This captured CO through microalgae could be used as potential carbon source to produce lipids for the generation of biofuel for replacing petroleum-derived transport fuel without affecting the supply of food and crops.

View Article and Find Full Text PDF

Azo dyes pose a major threat to current civilization by appearing in almost all streams of wastewater. The present investigation was carried out to examine the potential of Graphene oxide (GO) nanoplatelets as an efficient, cost-effective and non-toxic azo dye adsorbent for efficient wastewater treatment. The treatment process was optimized using Artificial Neural Network for maximum percentage dye removal and evaluated in terms of varying operational parameters, process kinetics and thermodynamics.

View Article and Find Full Text PDF

Soil is widely used as adsorbent for removing toxic pollutants from their aqueous solutions due to its wide availability and cost efficiency. This study investigates the potential of soil and soil composites for removal of crystal violet (CV) dye from solution on a comparative scale. Optimisation of different process parameters was carried out using a novel approach of response surface methodology (RSM) and a central composite design (CCD) was used for determining the optimum experimental conditions, as well as the result of their interactions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8u0qman8030quebbbd8rh30kse175hnb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once