Publications by authors named "Papic Z"

In contrast with extended Bloch waves, a single particle can become spatially localized due to the so-called skin effect originating from non-Hermitian pumping. Here we show that in kinetically constrained many-body systems, the skin effect can instead manifest as dynamical amplification within the Fock space, beyond the intuitively expected and previously studied particle localization and clustering. We exemplify this non-Hermitian Fock skin effect in an asymmetric version of the PXP model and show that it gives rise to ergodicity-breaking eigenstates-the non-Hermitian analogs of quantum many-body scars.

View Article and Find Full Text PDF

Geometric fluctuations of the density mode in a fractional quantum Hall (FQH) state can give rise to a nematic FQH phase, a topological state with a spontaneously broken rotational symmetry. While experiments on FQH states in the second Landau level have reported signatures of putative FQH nematics in anisotropic transport, a realistic model for this state has been lacking. We show that the standard model of particles in the lowest Landau level interacting via the Coulomb potential realizes the FQH nematic transition, which is reached by a progressive reduction of the strength of the shortest-range Haldane pseudopotential.

View Article and Find Full Text PDF

Emerging quantum technologies hold the promise of unravelling difficult problems ranging from condensed matter to high-energy physics while, at the same time, motivating the search for unprecedented phenomena in their setting. Here, we use a custom-built superconducting qubit ladder to realize non-thermalizing states with rich entanglement structures in the middle of the energy spectrum. Despite effectively forming an "infinite" temperature ensemble, these states robustly encode quantum information far from equilibrium, as we demonstrate by measuring the fidelity and entanglement entropy in the quench dynamics of the ladder.

View Article and Find Full Text PDF

Protecting coherent quantum dynamics from chaotic environment is key to realizations of fragile many-body phenomena and their applications in quantum technology. We present a general construction that embeds a desired periodic orbit into a family of nonintegrable many-body Hamiltonians, whose dynamics is otherwise chaotic. Our construction is based on time-dependent variational principle that projects quantum dynamics onto a manifold of low-entangled states, and it complements earlier approaches for embedding nonthermal eigenstates, known as quantum many-body scars, into thermalizing spectra.

View Article and Find Full Text PDF

The Moore-Read state, one of the leading candidates for describing the fractional quantum Hall effect at filling factor ν=5/2, is a paradigmatic p-wave superconductor with non-Abelian topological order. Among its many exotic properties, the state hosts two collective modes: a bosonic density wave and a neutral fermion mode that arises from an unpaired electron in the condensate. It has recently been proposed that the descriptions of the two modes can be unified by postulating supersymmetry (SUSY) that relates them in the long-wavelength limit.

View Article and Find Full Text PDF
Article Synopsis
  • Persistent oscillatory dynamics in nonequilibrium many-body systems highlight the breakdown of ergodicity, drawing attention to systems like discrete time crystals and quantum many-body scars (QMBS).
  • While discrete time crystals break the Z₂ symmetry of an external drive, QMBS consist of nonthermalizing eigenstates with an su(2) algebra representation.
  • This study explores the existence of a continuous time crystal (CTC) in undriven, energy-conserving systems and introduces a long-range XYZ spin model that features both CTC and QMBS, mapping the dynamical phase diagram through numerical simulations.
View Article and Find Full Text PDF

Intermediate-scale quantum technologies provide new opportunities for scientific discovery, yet they also pose the challenge of identifying suitable problems that can take advantage of such devices in spite of their present-day limitations. In solid-state materials, fractional quantum Hall phases continue to attract attention as hosts of emergent geometrical excitations analogous to gravitons, resulting from the nonperturbative interactions between the electrons. However, the direct observation of such excitations remains a challenge.

View Article and Find Full Text PDF

Recent experimental observation of weak ergodicity breaking in Rydberg atom quantum simulators has sparked interest in quantum many-body scars-eigenstates which evade thermalization at finite energy densities due to novel mechanisms that do not rely on integrability or protection by a global symmetry. A salient feature of some quantum many-body scars is their subvolume bipartite entanglement entropy. In this Letter, we demonstrate that such exact many-body scars also possess extensive multipartite entanglement structure if they stem from an su(2) spectrum generating algebra.

View Article and Find Full Text PDF

Exciton condensates (ECs) are macroscopic coherent states arising from condensation of electron-hole pairs. Bilayer heterostructures, consisting of two-dimensional electron and hole layers separated by a tunnel barrier, provide a versatile platform to realize and study ECs. The tunnel barrier suppresses recombination, yielding long-lived excitons.

View Article and Find Full Text PDF

The interaction between electrons in graphene under high magnetic fields drives the formation of a rich set of quantum Hall ferromagnetic (QHFM) phases with broken spin or valley symmetry. Visualizing atomic-scale electronic wave functions with scanning tunneling spectroscopy (STS), we resolved microscopic signatures of valley ordering in QHFM phases and spectral features of fractional quantum Hall phases of graphene. At charge neutrality, we observed a field-tuned continuous quantum phase transition from a valley-polarized state to an intervalley coherent state, with a Kekulé distortion of its electronic density.

View Article and Find Full Text PDF

Motivated by recent observations of ergodicity breaking due to Hilbert space fragmentation in 1D Fermi-Hubbard chains with a tilted potential [Scherg et al., arXiv:2010.12965], we show that the same system also hosts quantum many-body scars in a regime U≈Δ≫J at electronic filling factor ν=1.

View Article and Find Full Text PDF

We introduce different types of quenches to probe the nonequilibrium dynamics and multiple collective modes of bilayer fractional quantum Hall states. We show that applying an electric field in one layer induces oscillations of a spin-1 degree of freedom, whose frequency matches the long-wavelength limit of the dipole mode. On the other hand, oscillations of the long-wavelength limit of the quadrupole mode, i.

View Article and Find Full Text PDF

Monolayer semiconducting transition-metal dichalcogenides (TMDs) represent a unique class of two-dimensional (2D) electron systems. Their atomically thin structure facilitates gate tunability just like graphene does, but unlike graphene, TMDs have the advantage of a sizable band gap and strong spin-orbit coupling. Measurements under large magnetic fields have revealed an unusual Landau level (LL) structure, distinct from other 2D electron systems.

View Article and Find Full Text PDF

To make safe road crossing decisions, the pedestrians need to estimate the distance and speed of oncoming vehicles, in order to make conclusions about the available time gap they need for their road crossing. Since the speed represents combination of distance and time, we focused on pedestrians' ability to estimate the speed of the oncoming vehicles accurately. The aim of this study was to find some characteristics important for the speed mis-estimation tendencies and its values.

View Article and Find Full Text PDF

We introduce a family of nonintegrable 1D lattice models that feature robust periodic revivals under a global quench from certain initial product states, thus generalizing the phenomenon of many-body scarring recently observed in Rydberg atom quantum simulators. Our construction is based on a systematic embedding of the single-site unitary dynamics into a kinetically constrained many-body system. We numerically demonstrate that this construction yields new families of models with robust wave-function revivals, and it includes kinetically constrained quantum clock models as a special case.

View Article and Find Full Text PDF

Motivated by recent experimental observations of coherent many-body revivals in a constrained Rydberg atom chain, we construct a weak quasilocal deformation of the Rydberg-blockaded Hamiltonian, which makes the revivals virtually perfect. Our analysis suggests the existence of an underlying nonintegrable Hamiltonian which supports an emergent SU(2)-spin dynamics within a small subspace of the many-body Hilbert space. We show that such perfect dynamics necessitates the existence of atypical, nonergodic energy eigenstates-quantum many-body scars.

View Article and Find Full Text PDF

Three-body correlations, which arise between spin-polarized electrons in the first excited Landau level, are believed to play a key role in the emergence of enigmatic non-Abelian fractional quantum Hall (FQH) effects. Inspired by recent advances in Floquet engineering, we investigate periodic driving of anisotropic two-body interactions as a route for controllably creating and tuning effective three-body interactions in the FQH regime. We develop an analytic formalism to describe this Floquet-FQH protocol, which is distinct from previous approaches that instead focus on band structure engineering via modulation of single-particle hopping terms.

View Article and Find Full Text PDF

The goal of this work was to elucidate similarities between microorganisms from the perspective of the humoral immune system reactivity in professional athletes. The reactivity of serum IgG of 14 young, individuals was analyzed to 23 selected microorganisms as antigens by use of the in house ELISA. Serum IgM and IgA reactivity was also analyzed and a control group of sex and age matched individuals was used for comparison.

View Article and Find Full Text PDF

A wide variety of two-dimensional electron systems allow for independent control of the total and relative charge density of two-component fractional quantum Hall (FQH) states. In particular, a recent experiment on bilayer graphene (BLG) observed a continuous transition between a compressible and incompressible phase at total filling ν_{T}=1/2 as charge is transferred between the layers, with the remarkable property that the incompressible phase has a finite interlayer polarizability. We argue that this occurs because the topological order of ν_{T}=1/2 systems supports a novel type of interlayer exciton that carries Fermi statistics.

View Article and Find Full Text PDF

We generalize the notion of Haldane pseudopotentials to anisotropic fractional quantum Hall (FQH) systems that are physically realized, e.g., in tilted magnetic field experiments or anisotropic band structures.

View Article and Find Full Text PDF

Interacting bosons or fermions give rise to some of the most fascinating phases of matter, including high-temperature superconductivity, the fractional quantum Hall effect, quantum spin liquids and Mott insulators. Although these systems are promising for technological applications, they also present conceptual challenges, as they require approaches beyond mean-field and perturbation theory. Here we develop a general framework for identifying the free theory that is closest to a given interacting model in terms of their ground-state correlations.

View Article and Find Full Text PDF

The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points.

View Article and Find Full Text PDF