Publications by authors named "Papia Ghosh"

Malignant neoplasms evolve in response to changes in oncogenic signalling. Cancer cell plasticity in response to evolutionary pressures is fundamental to tumour progression and the development of therapeutic resistance. Here we determine the molecular and cellular mechanisms of cancer cell plasticity in a conditional oncogenic Kras mouse model of pancreatic ductal adenocarcinoma (PDAC), a malignancy that displays considerable phenotypic diversity and morphological heterogeneity.

View Article and Find Full Text PDF

Unlabelled: Leveraging The Cancer Genome Atlas (TCGA) multidimensional data in glioblastoma, we inferred the putative regulatory network between microRNA and mRNA using the Context Likelihood of Relatedness modeling algorithm. Interrogation of the network in context of defined molecular subtypes identified 8 microRNAs with a strong discriminatory potential between proneural and mesenchymal subtypes. Integrative in silico analyses, a functional genetic screen, and experimental validation identified miR-34a as a tumor suppressor in proneural subtype glioblastoma.

View Article and Find Full Text PDF

Histidine triad nucleotide-binding protein 1 (HINT1) is a haploinsufficient tumor suppressor gene that inhibits the Wnt/β-catenin pathway in colon cancer cells and Microphthalmia-associated transcription factor (MITF) activity in human mast cells. MITF and β-catenin play a central role in melanocyte and melanoma cell survival, and this study aimed to investigate the effects of HINT1 on the MITF and β-catenin pathways in malignant melanoma cells. We found that HINT1 inhibits MITF and β-catenin transcriptional activity, and both proteins can be co-immunoprecipitated with an anti-HINT1-specific antibody in melanoma cell lines.

View Article and Find Full Text PDF

Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5-55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb).

View Article and Find Full Text PDF

The rapidly increasing incidence of melanoma, coupled with its highly aggressive metastatic nature, is of urgent concern. In order to design rational therapies, it is of critical importance to identify the genetic determinants that drive melanoma formation and progression. To date, signaling cascades emanating from the EGF receptor, c-MET and other receptors are known to be altered in melanoma.

View Article and Find Full Text PDF

The mammalian target-of-rapamycin (mTOR) signaling pathway serves as a major regulator of cell growth, cell size and metabolism. In vivo, mTOR exists in two complexes, both of which contain the catalytic subunit mTOR, the invariable subunit mLST8, and a complex specific subunit Raptor or Rictor, forming either the rapamycin-sensitive mTORC1 or rapamycin-insensitive mTORC2, respectively. The exact functions of Raptor or Rictor in these complexes are still unclear.

View Article and Find Full Text PDF

The CUL4 (cullin 4) proteins are the core components of a new class of ubiquitin E3 ligases that regulate replication and transcription. To examine the roles of CUL4 in cell cycle regulation, we analyzed the effect of inactivation of CUL4 in both Drosophila and human cells. We found that loss of CUL4 in Drosophila cells causes G(1) cell cycle arrest and an increased protein level of the CDK inhibitor Dacapo.

View Article and Find Full Text PDF