Publications by authors named "Papavassiliou D"

Hydrogen's contribution to a sustainable energy transformation requires intermittent storage technologies, e.g., underground hydrogen storage (UHS).

View Article and Find Full Text PDF

A coarse-grained modeling approach is employed to probe the effect of nanoparticles and their wettability on the stability of the interface between two immiscible fluids. In this study, pure oil (dodecane) and water are placed side by side in a nanochannel, forming a meniscus. Homogeneous hydrophilic nanoparticles, Janus particles, and homogeneous hydrophobic nanoparticles are placed at the oil-water interface, and their dynamics are studied as they rearrange at the oil-water interface.

View Article and Find Full Text PDF

The fate and aggregation of nanoparticles (NPs) in the subsurface are important due to potentially harmful impacts on the environment and human health. This study aims to investigate the effects of flow velocity, particle size, and particle concentration on the aggregation rate of NPs in a diffusion-limited regime and build an equation to predict the aggregation rate when NPs move in the pore space between randomly packed spheres (including mono-disperse, bi-disperse, and tri-disperse spheres). The flow of 0.

View Article and Find Full Text PDF

Hypothesis: The main hypothesis is that the aggregation process for nanoparticles (NPs) propagating in porous media is affected by the structure of the flow field as well as by the properties of the primary NPs. If this were true, then the aggregation could be predicted and controlled. However, to obtain reliable results from computations, one needs to account for the interactions between the NPs as well as the details of the fluid velocity, thus making advances over prior efforts that either ignored the aggregation of NPs, or used probabilistic methods to model aggregation.

View Article and Find Full Text PDF

The stress distribution along the trajectories of passive particles released in turbulent flow were computed with the use of Lagrangian methods and direct numerical simulations. The flow fields selected were transitional Poiseuille-Couette flow situations found in ventricular assist devices and turbulent flows at conditions found in blood pumps. The passive particle properties were selected to represent molecules of the von Willebrand factor (vWF) protein.

View Article and Find Full Text PDF

The effects of surface-active nanoparticles and surfactants on the behavior of oil-water interfaces have implications for a variety of industrial processes related to multiphase flows including separation processes, enhanced oil recovery, and environmental remediation. In this work, the migration of an oil droplet in shear flow is investigated with the presence of surface-active molecules and nanoparticles at the oil-water interface. Pure oil (heptadecane) in water and oil with the presence of Janus nanoparticles (JPs) and/or octaethylene glycol monododecyl ether, a nonionic surfactant, were examined using coarse-grained computations.

View Article and Find Full Text PDF

The presence of contamination in sodium dodecyl sulfate (SDS) solutions in the form of dodecanol (LOH) is known to drastically affect the resulting interfacial properties such as surface tension (SFT) and rheology. Dodecanol molecules, which are the product of SDS hydrolysis and are inherently present in SDS solutions, have higher surface activity compared to SDS because they are less soluble in water. A characteristic dip in the SFT isotherm is an indicator of the dodecanol contamination in the sample.

View Article and Find Full Text PDF

Coarse-grained modeling methods allow simulations at larger scales than molecular dynamics, making it feasible to simulate multifluid systems. It is, however, critical to use model parameters that represent the fluid properties with fidelity under both equilibrium and dynamic conditions. In this work, dissipative particle dynamics (DPD) methods were used to simulate the flow of oil and water in a narrow slit under Poiseuille and Couette flow conditions.

View Article and Find Full Text PDF

The configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological hemodynamic stresses.

View Article and Find Full Text PDF

Hypothesis: Janus particles (JPs) and surfactants express different behaviors at the oil-water interface under compression. When both are present at the interface, their synergies result in a different collapse mechanism than when present individually depending on the concentration of the JPs and surfactants.

Experiments: Coarse-grained modeling methods were used to probe the synergies between Janus nanoparticles and nonionic surfactants on the stability of an oil-water interface under compression.

View Article and Find Full Text PDF

Conventional approaches (e.g., pyrolysis) for managing waste polymer foams typically require highly technical skills and consume large amounts of energy resources.

View Article and Find Full Text PDF

Fluid forces and their effects on cells have been researched for quite some time, especially in the realm of biology and medicine. Shear forces have been the primary emphasis, often attributed as being the main source of cell deformation/damage in devices like prosthetic heart valves and artificial organs. Less well understood and studied are extensional stresses which are often found in such devices, in bioreactors, and in normal blood circulation.

View Article and Find Full Text PDF

Hemolysis in medical devices and implants has been a primary concern over the past fifty years. Turbulent flow in particular can cause cell trauma and hemolysis in such devices. In this work, the effects of turbulence on red blood cell (RBC) damage are examined by simulating the flow field through a centrifugal blood pump that has been identified as a case study through the critical path initiative of the US Food and Drug Administration (FDA).

View Article and Find Full Text PDF

Microparticles are produced by various cells due to a number of different stimuli in the circulatory system. Shear stress has been shown to injure red blood cells resulting in hemolysis or non-reversible sub-hemolytic damage. We hypothesized that, in the sub-hemolytic shear range, there exist sufficient mechanical stimuli for red blood cells to respond with production of microparticles.

View Article and Find Full Text PDF

Red blood cells (RBCs) passing through heart pumps, prosthetic heart valves and other cardiovascular devices undergo early senescence attributed to non-physiologic forces. We hypothesized that mechanical trauma accelerates aging by deformation of membrane proteins to cause binding of naturally occurring IgG. RBCs isolated from blood of healthy volunteers were exposed to high shear stress in a viscometer or microfluidics channel to mimic mechanical trauma and then incubated with autologous plasma.

View Article and Find Full Text PDF

Photothermal therapy using near-infrared radiation and local heating agents can induce selective tumor ablation with limited harm to the surrounding normal tissue. Graphene sheets are promising local heating agents because of their strong absorbance of near-infrared radiation. Experimental studies have been conducted to study the heating effect of graphene in photothermal therapy, yet few efforts have been devoted to the quantitative understanding of energy conversion and transport in such systems.

View Article and Find Full Text PDF

Hypothesis: Nanoparticles (NPs) can reduce the interfacial tension (IFT) of the oil-water system containing surfactants by reducing the interfacial area available to surfactants. The ability to reduce the IFT when surfactants are present in addition to NPs depends on the localization of the NPs on the interface, which is related to the nature of the NPs and the interaction between NPs and surfactant molecules.

Experiments: Systems of NPs and surfactants on the oil-water interface were studied using dissipative particle dynamics (DPD).

View Article and Find Full Text PDF

In order to investigate the interfacial region between oil and water with the presence of surfactants using coarse-grained computations, both the interaction between different components of the system and the number of surfactant molecules present at the interface play an important role. However, in many prior studies, the amount of surfactants used was chosen rather arbitrarily. In this work, a systematic approach to develop coarse-grained models for anionic surfactants (such as sodium dodecyl sulfate) and nonionic surfactants (such as octaethylene glycol monododecyl ether) in oil-water interfaces is presented.

View Article and Find Full Text PDF

Graphene has been combined with molybdenum disulfide (MoS) to ameliorate the poor cycling stability and rate performance of MoS in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS.

View Article and Find Full Text PDF

Graphene aerogels (GAs) have attracted extensive interest in diverse fields, owing to their ultrahigh surface area, low density and decent electrical conductivity. However, the undesirable thermal conductivity of GAs may limit their applications in energy storage devices. Here, we report a facile hydrothermal method to modulate both the electrical and thermal properties of GAs by including bulk molybdenum disulfide (MoS₂).

View Article and Find Full Text PDF

The design of blood pumps for use in ventricular assist devices, which provide life-saving circulatory support in patients with heart failure, require remarkable precision and attention to detail to replicate the functionality of the native heart. The United States Food and Drug Administration (FDA) initiated a Critical Path Initiative to standardize and facilitate the use of computational fluid dynamics in the study and development of these devices. As a part of the study, a simplified centrifugal blood pump model generated by computer-aided design was released to universities and laboratories nationwide.

View Article and Find Full Text PDF

In this work, contributing factors for red blood cell (RBC) damage in turbulence are investigated by simulating jet flow experiments. Results show that dissipative eddies comparable or smaller in size to the red blood cells cause hemolysis and that hemolysis corresponds to the number and, more importantly, the surface area of eddies that are associated with Kolmogorov length scale (KLS) smaller than about 10 μm. The size distribution of Kolmogorov scale eddies is used to define a turbulent flow extensive property with eddies serving as a means to assess the turbulence effectiveness in damaging cells, and a new hemolysis model is proposed.

View Article and Find Full Text PDF

The effects of shear and particle shape on the physical adsorption of a polymer (polyvinyl pyrrolidone, PVP) on carbon nanoparticles (CNPs) were studied with dissipative particle dynamics (DPD) methods. It was found that the conformation of the polymer during adsorption and desorption from the nanoparticle can be classified into three possible types, i.e.

View Article and Find Full Text PDF

The morphology of surfactants physically adsorbed on the surface of carbon nanotubes (CNTs) has a significant impact on the dispersion of CNTs in the solution. The adsorption of the surfactants alfoterra 123-8s (AF) and tergitol 15-s-40 (TG) on CNTs was investigated with dissipative particle dynamics (DPD) simulations, as well as the behavior of the binary surfactant system with CNTs. Properties of surfactants (i.

View Article and Find Full Text PDF

Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results.

View Article and Find Full Text PDF