Population size is a key parameter for the conservation of animal species. Close-kin mark-recapture (CKMR) relies on the observed frequency and type of kinship among individuals sampled from the population to estimate population size. Knowledge of the age of the individuals, or a surrogate thereof, is essential for inference with acceptable precision.
View Article and Find Full Text PDFPredators display rhythms in behavior and habitat use, often with the goal of maximizing foraging success. The underlying mechanisms behind these rhythms are generally linked to abiotic conditions related to diel, lunar, or seasonal cycles. To understand their effects on the space use, activity, and swimming depth of gray reef sharks (Carcharhinus amblyrhynchos), we tagged 38 individuals with depth and accelerometer sensors in a French Polynesian atoll channel exposed to strong tidal flow, and monitored them over a year.
View Article and Find Full Text PDFInterspecific interactions, including predator-prey, intraguild predation (IGP) and competition, may drive distribution and habitat use of predator communities. However, elucidating the relative importance of these interactions in shaping predator distributions is challenging, especially in marine communities comprising highly mobile species. We used individual-based models (IBMs) to predict the habitat distributions of apex predators, intraguild (IG) prey and prey.
View Article and Find Full Text PDFMany shark populations are in decline around the world, with severe ecological and economic consequences. Fisheries management and marine protected areas (MPAs) have both been heralded as solutions. However, the effectiveness of MPAs alone is questionable, particularly for globally threatened sharks and rays ('elasmobranchs'), with little known about how fisheries management and MPAs interact to conserve these species.
View Article and Find Full Text PDFMetabolic ecology predicts that ectotherm metabolic rates, and thus consumption rates, will increase with body size and temperature. Predicted climatic increases in temperature are likely to increase the consumption rates of ectothermic predators; however, the ecological impact of these increases will partly depend on whether prey productivity changes with temperature at a similar rate. Furthermore, total predator consumption and prey productivity will depend on species abundances that vary across habitat types.
View Article and Find Full Text PDFA global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages.
View Article and Find Full Text PDFThe coexistence of ecologically and morphologically similar species is often facilitated by the partitioning of ecological niches. While subordinate species can reduce competition with dominant competitors through spatial and/or trophic segregation, empirical support from wild settings, particularly those involving large-bodied taxa in marine ecosystems, are rare. Shark nursery areas provide an opportunity to investigate the mechanisms of coexistence.
View Article and Find Full Text PDFAnnu Rev Anim Biosci
February 2023
Addressing important questions in animal ecology, physiology, and environmental science often requires in situ information from wild animals. This difficulty is being overcome by biologging and biotelemetry, or the use of miniaturized animal-borne sensors. Although early studies recorded only simple parameters of animal movement, advanced devices and analytical methods can now provide rich information on individual and group behavior, internal states, and the surrounding environment of free-ranging animals, especially those in marine systems.
View Article and Find Full Text PDFMarine organisms normally swim at elevated speeds relative to cruising speeds only during strenuous activity, such as predation or escape. We measured swimming speeds of 29 ram ventilating sharks from 10 species and of three Atlantic bluefin tunas immediately after exhaustive exercise (fighting a capture by hook-and-line) and unexpectedly found all individuals exhibited a uniform mechanical response, with swimming speed initially two times higher than the cruising speeds reached approximately 6 h later. We hypothesized that elevated swimming behaviour is a means to increase energetic demand and drive the removal of lactate accumulated during capture via oxidation.
View Article and Find Full Text PDFSocial foraging, where animals forage in groups, takes many forms but is less studied in marine predators as measuring social associations in the wild is challenging. We used biologging (activity, cameras and telemetry receivers) sensors to measure social associations and simultaneous behaviour, in white sharks () off Guadalupe Island, Mexico. Animal-borne telemetry receivers revealed that sharks varied in the number of associations they formed and occurred most often when sharks were swimming in straight paths or when they were turning frequently.
View Article and Find Full Text PDFPrey depletion may contribute to marine predator declines, yet the forage base required to sustain an unfished population of predatory fish at carrying capacity is unknown. We integrated demographic and physiological data within a Bayesian bioenergetic model to estimate annual consumption of a gray reef shark () population at a remote Pacific atoll (Palmyra Atoll) that are at carrying capacity. Furthermore, we estimated the proportion of the atoll's reef fish biomass production consumed by the gray reef sharks, assuming sharks either partially foraged pelagically (mean 7%), or solely within the reef environment (mean 52%).
View Article and Find Full Text PDFModels of foraging behaviour typically assume that prey do not adapt to temporal variation in predation risk, such as by avoiding foraging at certain times of the day. When this behavioural plasticity is considered-such as in predator-prey games-the role of abiotic factors is usually ignored. An abiotic factor that exerts strong influence on the physiology and behaviour of many animals is ambient temperature, although it is often ignored from game models as it is implicitly assumed that both predators and prey are homothermic.
View Article and Find Full Text PDFMany large marine predators make excursions from surface waters to the deep ocean below 200 m. Moreover, the ability to access meso- and bathypelagic habitats has evolved independently across marine mammals, reptiles, birds, teleost fishes, and elasmobranchs. Theoretical and empirical evidence suggests a number of plausible functional hypotheses for deep-diving behavior.
View Article and Find Full Text PDFAn animal's energy landscape considers the power requirements associated with residing in or moving through habitats. Within marine environments, these landscapes can be dynamic as water currents will influence animal power requirements and can change rapidly over diel and tidal cycles. In channels and along slopes with strong currents, updraft zones may reduce energy expenditure of negatively buoyant fishes that are also obligate swimmers.
View Article and Find Full Text PDFAnimal dietary information provides the foundation for understanding trophic relationships, which is essential for ecosystem management. Yet, in marine systems, high-resolution diet reconstruction tools are currently under-developed. This is particularly pertinent for large marine vertebrates, for which direct foraging behaviour is difficult or impossible to observe and, due to their conservation status, the collection of stomach contents at adequate sample sizes is frequently impossible.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAnimals across vertebrate taxa form social communities and often exist as fission-fusion groups. Central place foragers (CPF) may form groups from which they will predictably disperse to forage, either individually or in smaller groups, before returning to fuse with the larger group. However, the function and stability of social associations in predatory fish acting as CPFs is unknown, as individuals do not need to return to a shelter yet show fidelity to core areas.
View Article and Find Full Text PDFDecades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally.
View Article and Find Full Text PDFBehavioral interactions such as dominance are critical components of animal social lives, competitive abilities, and resulting distribution patterns with coexisting species. Strong interference competition can drive habitat separation, but less is known of the role of interference if agonistic interactions are weak. While most theoretical models assume interference abilities to be constant in an environment, few consider that the extent of interference can vary by habitat and change model predictions.
View Article and Find Full Text PDFAn oceanic whitetip shark (Carcharhinus longimanus) was observed off the coast of Kona, Hawaii, with scars caused by the tentacles of a large cephalopod. While the exact species could not be confirmed, candidate species include the giant squid (Architeuthis dux) or species from the genera Thysanoteuthis (flying squids) and Megalocranchia (glass squids). Telemetry shows C.
View Article and Find Full Text PDFGlobally, the frequency of shark bites is rising, resulting in an increasing demand for shark deterrents and measures to lessen the impact of shark bites on humans. Most existing shark protection measures are designed to reduce the probability of a bite, but fabrics that minimise injuries when a shark bite occurs can also be used as mitigation devices. Here, we assessed the ability of the Ocean Guardian Scuba7 and Kevlar material to reduce the likelihood of blacktip reef sharks, Carcharhinus melanopterus, from feeding, and to minimise injuries from shark bites.
View Article and Find Full Text PDF