Publications by authors named "Papakosta P"

High-Density Lipoprotein cholesterol (HDL-C) levels do not correlate well with Coronary Artery Disease (CAD) risk, while HDL functionality affects atherogenesis and is a better prognostic marker for CAD. Often, the extreme HDL-C levels have a multigenic origin. Here, we searched for single-nucleotide polymorphisms (SNPs) in ten genes of HDL metabolism in a Greek cohort with very low (<10th percentile, n = 13) or very high (>90th percentile, n = 21) HDL-C.

View Article and Find Full Text PDF
Article Synopsis
  • Smad proteins, critical for TGFbeta signaling in mammalian cells, consist of two main structured domains (MH1 and MH2) connected by a linker region that may influence their function in cross-signaling with other pathways.
  • The study involved creating Smad3 mutants with specific amino acid changes in the linker region, revealing that certain residues (like glutamine 222 and proline 229) are vital for Smad3's ability to oligomerize, accumulate in the nucleus, and bind to DNA after TGFbeta stimulation.
  • Interestingly, one mutant (asparagine 218 to alanine) showed increased activity, while another (P229A) reduced TGFbeta signaling when overexpressed, unders
View Article and Find Full Text PDF

Smad proteins are the key effectors of the transforming growth factor beta (TGFbeta) signaling pathway in mammalian cells. The importance of Smads for human physiology is documented by the identification and characterization of mutations that are frequently found in cancer patients. In the present study we have functionally characterized such a tumorigenic mutation in Smad4 (E330A) and shown that this mutant as well as a Smad3 mutant bearing the corresponding mutation (Smad3 E239A) failed to activate transcription in response to TGFbeta stimulation because of defects in homo-and hetero-oligomerization.

View Article and Find Full Text PDF

Regulators of G-protein signaling (RGS) 9-2 is a striatal enriched protein that controls G protein coupled receptor signaling duration by accelerating Galpha subunit guanosine triphosphate hydrolysis. We have previously demonstrated that mice lacking the RGS9 gene show enhanced morphine analgesia and delayed development of tolerance. Here we extend these studies to understand the mechanism via which RGS9-2 modulates opiate actions.

View Article and Find Full Text PDF

Transforming growth factor beta (TGFbeta) regulates transcriptional responses via activation of cytoplasmic effector proteins termed Smads. Following their phosphorylation by the type I TGFbeta receptor, Smads form oligomers and translocate to the nucleus where they activate the transcription of TGFbeta target genes in cooperation with nuclear cofactors and coactivators. In the present study, we have undertaken a deletion analysis of human Smad3 protein in order to characterize domains that are essential for transcriptional activation in mammalian cells.

View Article and Find Full Text PDF

In the present study, we have investigated mechanisms of transcriptional co-operation between proteins that belong to the tumour suppressor p53 and Sp (specificity protein) families of transcription factors. Such mechanisms may play an important role in the regulation of genes containing binding sites for both classes of transcription factors in their promoters. Two of these genes were analysed in the present study: the cyclin-dependent kinase inhibitor p21Cip1 gene and the PUMA (p53-up-regulated mediator of apoptosis) gene.

View Article and Find Full Text PDF

We have shown previously that the hepatic control region 1 (HCR-1) enhances the activity of the human apolipoprotein C-II (apoC-II) promoter in HepG2 cells via two hormone response elements (HREs) present in the apoC-II promoter. In the present paper, we report that the HCR-1 selectively mediates the transactivation of the apoC-II promoter by chenodeoxycholic acid (CDCA) and 9- cis -retinoic acid. CDCA, which is a natural ligand of farnesoid X receptor alpha (FXRalpha), increases the steady-state apoC-II mRNA levels in HepG2 cells.

View Article and Find Full Text PDF

In the present study we present evidence for the critical role of Sp1 in the mechanism of transactivation of the human cell cycle inhibitor p21(WAF1/Cip1) (p21) gene promoter by the tumor suppressor p53 protein. We found that the distal p53-binding site of the p21 promoter acts as an enhancer on the homologous or heterologous promoters in hepatoma HepG2 cells. In transfection experiments, p53 transactivated the p21 promoter in HaCaT cells that express Sp1 but have a mutated p53 form.

View Article and Find Full Text PDF

The cell cycle inhibitor protein p21(WAF1/Cip1) (p21) is a critical downstream effector in p53-dependent mechanisms of growth control and p53-independent pathways of terminal differentiation. We have recently reported that the transforming growth factor-beta pathway-specific Smad3 and Smad4 proteins transactivate the human p21 promoter via a short proximal region, which contains multiple binding sites for the ubiquitous transcription factor Sp1. In the present study we show that the Sp1-occupied promoter region mediates transactivation of the p21 promoter by c-Jun and the related proteins JunB, JunD, and ATF-2.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionau4pmebmujkeir3c8t66gll46m1mpuqc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once