The complete amino acid sequence of the unusual diheme split-Soret cytochrome c from the sulphate-reducing Desulfovibrio desulfuricans strain ATCC 27774 has been determined using classical chemical sequencing techniques and mass spectrometry. The 247-residue sequence shows almost no similarity with any other known diheme cytochrome c, but the heme-binding site of the protein is similar to that of the cytochromes c3 from the sulphate reducers. The cytochrome-c-like domain of the protein covers only the C-terminal part of the molecule, and there is evidence for at least one more domain containing four cysteine residues, which might bind another cofactor, possibly a non-heme iron-containing cluster.
View Article and Find Full Text PDFDesulfovibrio gigas ferredoxin II (FdII) is a small protein (alpha 4 subunit structure as isolated; M(r) approximately 6400 per subunit; 6 cysteine residues) containing one Fe3S4 cluster per alpha-subunit. The x-ray structure of FdII has revealed a disulfide bridge formed by Cys-18 and Cys-42 approximately 13 A away from the center of the cluster; moreover, the x-ray structure indicates that Cys-11 forms a disulfide bridge with a methanethiol. In the oxidized state, FdIIoxm the 1H NMR spectra, exhibit four low-field contact-shifted resonances at 29, 24, 18, and 15.
View Article and Find Full Text PDFPrevious Mössbauer and EPR studies of the MoFe protein (approximately 30 Fe and 2 Mo) of nitrogenase have revealed the presence of two unique clusters, namely, the P-clusters (presumably of the Fe4S4 type) and the molybdenum- and iron-containing cofactors (or M-clusters). Mössbauer components D (approximately 10-12 Fe) and Fe2+ (approximately 4 Fe) represent subsites of the P-clusters while component S (approximately 2 Fe) appeared to belong to a separate, unidentified cluster. In order to refine the analyses of Mössbauer spectra, we have constructed an isotopic hybrid of the Klebsiella pneumoniae protein which contains 57Fe-enriched P-clusters and 56Fe-enriched M-clusters.
View Article and Find Full Text PDF