Background: The Leishmania genome harbors formerly active short interspersed degenerated retroposons (SIDERs) representing the largest family of repetitive elements among trypanosomatids. Their substantial expansion in Leishmania is a strong predictor of important biological functions. In this study, we combined multilevel bioinformatic predictions with high-throughput genomic and transcriptomic analyses to gain novel insights into the diversified roles retroposons of the SIDER2 subfamily play in Leishmania genome evolution and expression.
View Article and Find Full Text PDFInuit of Nunavik are coping with living conditions that can influence respiratory health. Our objective was to investigate associations between respiratory health in Inuit communities and their airway microbiome. Oropharyngeal samples were collected during the Qanuilirpitaa? 2017 Inuit Health Survey and subjected to metagenomic analyses.
View Article and Find Full Text PDFSymptoms of mild hypoglycemia are easily overlooked especially when there are no complaints from the patients, but it could be a warning sign of an underlying genetic disease. Genetic testing for the entire family is a key step in neonatal hypoglycemia workup.
View Article and Find Full Text PDFLeishmania infantum, the causative agent of American Visceral Leishmaniasis (VL), is known for its ability to modulate the host immune response to its own favor. Ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase) represents a family of enzymes that hydrolyze nucleotides and are involved in nucleotide-dependent biological processes. L.
View Article and Find Full Text PDFPLoS Negl Trop Dis
October 2021
Poly(A) Binding Proteins (PABPs) are major eukaryotic RNA-binding proteins (RBPs) with multiple roles associated with mRNA stability and translation and characterized mainly from multicellular organisms and yeasts. A variable number of PABP homologues are seen in different organisms however the biological reasons for multiple PABPs are generally not well understood. In the unicellular Leishmania, dependent on post-transcriptional mechanisms for the control of its gene expression, three distinct PABPs are found, with yet undefined functional distinctions.
View Article and Find Full Text PDFDDX3 is a multifaceted RNA helicase of the DEAD-box family that plays central roles in all aspects of RNA metabolism including translation initiation. Here, we provide evidence that the Leishmania DDX3 ortholog functions in post-initiation steps of translation. We show that genetic depletion of DDX3 slows down ribosome movement resulting in elongation-stalled ribosomes, impaired translation elongation and decreased de novo protein synthesis.
View Article and Find Full Text PDFValosin-containing protein (VCP)/p97/Cdc48 is an AAA + ATPase associated with many ubiquitin-dependent cellular pathways that are central to protein quality control. VCP binds various cofactors, which determine pathway selectivity and substrate processing. Here, we used co-immunoprecipitation and mass spectrometry studies coupled to in silico analyses to identify the Leishmania infantum VCP (LiVCP) interactome and to predict molecular interactions between LiVCP and its major cofactors.
View Article and Find Full Text PDFMethods Mol Biol
February 2021
RNA-binding proteins (RBPs) play key roles in many aspects of RNA metabolism. In Leishmania, a unicellular eukaryote that favors the posttranscriptional mode of regulation for controlling gene expression levels, the function of RBPs becomes even more critical. However, due largely to limited in vivo approaches available for identifying RBPs in these parasites, there have been no significant advances to our understanding of the role these proteins play in posttranscriptional control through binding to cis-acting elements in the 3' untranslated region (3'UTR) of mRNAs.
View Article and Find Full Text PDFparasites are responsible for a range of clinical manifestations ranging from self-resolving cutaneous sores to life-threatening diseases. The management of leishmaniasis is complicated in part by the scarcity of treatment options but also by the emerging or established resistance to available drugs. A major driver of resistance in is the amplification of resistance genes taking advantage of the highly repetitive genomic landscape of the parasite.
View Article and Find Full Text PDFCurrent genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs.
View Article and Find Full Text PDFValosin-containing protein (VCP)/p97/Cdc48 is one of the best-characterised type II cytosolic AAA+ ATPases most known for their role in ubiquitin-dependent protein quality control. Here, we provide functional insights into the role of the Leishmania VCP/p97 homologue (LiVCP) in the parasite intracellular development. We demonstrate that although LiVCP is an essential gene, Leishmania infantum promastigotes can grow with less VCP.
View Article and Find Full Text PDFThe Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain.
View Article and Find Full Text PDFReevaluation of treatment guidelines for Old and New World leishmaniasis is urgently needed on a global basis because treatment failure is an increasing problem. Drug resistance is a fundamental determinant of treatment failure, although other factors also contribute to this phenomenon, including the global HIV/AIDS epidemic with its accompanying impact on the immune system. Pentavalent antimonials have been used successfully worldwide for the treatment of leishmaniasis since the first half of the 20th century, but the last 10 to 20 years have witnessed an increase in clinical resistance, e.
View Article and Find Full Text PDFand other trypanosomatid protozoa lack control at the level of transcription initiation and regulate gene expression exclusively post-transcriptionally. We have reported previously that harbors a unique class of hort nterspersed generate etroposons (SIDERs) that are predominantly located within 3'UTRs and play a major role in post-transcriptional control. We have shown that members of the SIDER2 subfamily initiate mRNA decay through endonucleolytic cleavage within the second conserved 79-nt signature sequence of SIDER2 retroposons.
View Article and Find Full Text PDFWe have reported previously that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily, largely located within 3'UTRs of Leishmania transcripts, promote rapid turnover of mRNAs through endonucleolytic cleavage within the highly conserved second tandem 79-nt hallmark sequence (79-nt SII). Here, we used site-directed mutagenesis and in silico RNA structural studies to delineate the cis-acting requirements within 79-nt SII for cleavage and mRNA degradation. The putative cleavage site(s) and other nucleotides predicted to alter the RNA secondary structure of 79-nt SII were either deleted or mutated and their effect on mRNA turnover was monitored using a gene reporter system.
View Article and Find Full Text PDFWe previously reported that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily predominantly located within 3' untranslated regions (UTRs) of Leishmania transcripts promote rapid turnover that is initiated by endonucleolytic cleavage. Here, we investigated whether SIDER2-mediated mRNA decay is linked to translation. We show that preventing translation initiation by inserting a hairpin structure at the 5'-end of a SIDER2-containing mRNA blocks degradation.
View Article and Find Full Text PDFDDX3 is a highly conserved member of ATP-dependent DEAD-box RNA helicases with multiple functions in RNA metabolism and cellular signaling. Here, we describe a novel function for DDX3 in regulating the mitochondrial stress response in the parasitic protozoan Leishmania. We show that genetic inactivation of DDX3 leads to the accumulation of mitochondrial reactive oxygen species (ROS) associated with a defect in hydrogen peroxide detoxification.
View Article and Find Full Text PDFhas a plastic genome, and drug pressure can select for gene copy number variation (CNV). CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs.
View Article and Find Full Text PDFInnovative strategies are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. Here we develop a sensitive method, which we term Cosmid Sequencing (or "Cos-Seq"), based on functional cloning coupled to next-generation sequencing. Cos-Seq identified >60 loci in the Leishmania genome that were enriched via drug selection with methotrexate and five major antileishmanials (antimony, miltefosine, paromomycin, amphotericin B, and pentamidine).
View Article and Find Full Text PDFThe eukaryotic initiation factor 4E (eIF4E) recognizes the mRNA cap structure and, together with eIF4G and eIF4A, form the eIF4F complex that regulates translation initiation in eukaryotes. In trypanosomatids, 2 eIF4E homologues (EIF4E3 and EIF4E4) have been shown to be part of eIF4F-like complexes with presumed roles in translation initiation. Both proteins possess unique N-terminal extensions, which can be targeted for phosphorylation.
View Article and Find Full Text PDFCutaneous leishmaniasis is a zoonotic, vector-borne disease causing a major health problem in several countries. No vaccine is available and there are limitations associated with the current therapeutic regimens. Immune responses to sand fly saliva have been shown to protect against Leishmania infection.
View Article and Find Full Text PDFVisceral leishmaniasis (VL) is a fatal disease caused by the intracellular protozoan parasite Leishmania infantum. Dogs are the primary reservoirs of this parasite, and vaccination of dogs could be an effective method to reduce its transfer to humans. In order to develop a vaccine against VL (apart from the choice of immunogenic candidate antigens), it is necessary to use an appropriate delivery system to promote a proper antigen-specific immune response.
View Article and Find Full Text PDFCanine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
July 2015