Publications by authors named "Papachan Kolattukudy"

The three-layered structure of the mammalian cerebellar cortex is generated through the coordinated migration of cerebellar neurons. Purkinje cells migrate and form a three- to four-cell-thick aggregate below the external granule cell layer during the embryonic stage, and align to form a monocellular arrangement in the Purkinje cell layer during the postnatal period. We previously reported the involvement of Cdk5-mediated CRMP2 phosphorylation in Purkinje cell migration and the synergistic roles of two other CRMPs, CRMP1 and CRMP4.

View Article and Find Full Text PDF

Axon pruning facilitates the removal of ectopic and misguided axons and plays an important role in neural circuit formation during brain development. Sema3F and its receptor neuropilin-2 (Nrp2) have been shown to be involved in the stereotyped pruning of the infrapyramidal bundle (IPB) of mossy fibers of the dentate gyrus (DG) in the developing hippocampus. Collapsin response mediator proteins (CRMPs) were originally identified as an intracellular mediator of semaphorin signaling, and the defective pruning of IPB was recently reported in CRMP2-/- and CRMP3-/- mice.

View Article and Find Full Text PDF

The mammalian cerebral cortex is characterized by a 6-layer structure, and proper neuronal migration is critical for its formation. Cyclin-dependent kinase 5 (Cdk5) has been shown to be a critical kinase for neuronal migration. Several Cdk5 substrates have been suggested to be involved in ordered neuronal migration.

View Article and Find Full Text PDF

Proper migration and positioning of Purkinje cells are important for formation of the developing cerebellum. Although several cyclin-dependent kinase 5 (Cdk5) substrates are known to be critical for ordered neuronal migration, there are no reports of mutant mouse-based, in vivo studies on the function of Cdk5-phosphorylation substrates in migration of Purkinje cells. We focused on the analysis of collapsin response mediator protein 2 (CRMP2), one of the Cdk5 substrates, because a previous study reported migration defects of cortical neurons with shRNA-mediated knockdown of CRMP2.

View Article and Find Full Text PDF

Collapsin response mediator proteins (CRMPs) are highly expressed in the brain during early postnatal development and continue to be present in specific regions into adulthood, especially in areas with extensive neuronal plasticity including the hippocampus. They are found in the axons and dendrites of neurons wherein they contribute to specific signaling mechanisms involved in the regulation of axonal and dendritic development/maintenance. We previously identified CRMP3's role on the morphology of hippocampal CA1 pyramidal dendrites and hippocampus-dependent functions.

View Article and Find Full Text PDF
Article Synopsis
  • Neural circuit formation is essential for brain development, relying on axon guidance molecules and their intracellular mediators like CRMPs.
  • This study found that CRMP4-deficient mice exhibited abnormal basal dendrite orientation in layer V pyramidal neurons, hinting at CRMPs' role in dendrite development.
  • The research also revealed that CRMP1 and CRMP4 have redundant functions, impacting dendritic orientation and bifurcation in certain neuron types, indicating their importance in neural circuit formation.
View Article and Find Full Text PDF

Collapsin response mediator proteins (CRMPs) are intracellular proteins that mediate signals for several extracellular molecules, such as Semaphorin3A and neurotrophins. The phosphorylation of CRMP1 and CRMP2 by Cdk5 at Ser522 is involved in axonal guidance and spine development. Here, we found that the Ser522-phosphorylated CRMP1 and/or CRMP2 are enriched in the dendrites of cultured cortical neurons and P7 cortical section.

View Article and Find Full Text PDF

This paper reports on the computational simulation and modeling of an in vitro alveolar construct system along the optical coherence microscopy (OCM) methods for visualizing engineered tissue. The optical imaging methods will be compared to immunohistochemical light microscopy samples of engineered alveolar constructs. Results show depth images of the alveolar tissue construct for a bilayer construct, as well as predictions of the gas exchange process in a simple model of a bio-reactor hosting the construct.

View Article and Find Full Text PDF

Collapsin response mediating protein-2 (CRMP2) has been identified as an intracellular protein mediating Semaphorin3A (Sema3A), a repulsive guidance molecule. In this study, we demonstrate that cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3beta (GSK3beta) plays a critical role in Sema3A signalling. In In vitro kinase assay, Cdk5 phosphorylated CRMP2 at Ser522, while GSK3beta did not induce any phosphorylation of CRMP2.

View Article and Find Full Text PDF