The evolution of past global ice sheets is highly uncertain. One example is the missing ice problem during the Last Glacial Maximum (LGM, 26 000-19 000 years before present) - an apparent 8-28 m discrepancy between far-field sea level indicators and modelled sea level from ice sheet reconstructions. In the absence of ice sheet reconstructions, researchers often use marine δO proxy records to infer ice volume prior to the LGM.
View Article and Find Full Text PDFThe SEAMIS database (Mendeley data repository; https://doi.org/10.17632/wp4ctb4667.
View Article and Find Full Text PDFThe study of past sea levels relies largely on the interpretation of sea-level indicators. Palaeo tidal notches are considered as one of the most precise sea-level indicators as their formation is closely tied to the local tidal range. We present geometric measurements of modern and palaeo (Marine Isotope Stage (MIS) 5e) tidal notches on Bonaire (southern Caribbean Sea) and results from two tidal simulations, using the present-day bathymetry and a palaeo-bathymetry.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically.
View Article and Find Full Text PDFAbout 34 million years ago, Earth's climate cooled and an ice sheet formed on Antarctica as atmospheric carbon dioxide (CO2) fell below ~750 parts per million (ppm). Sedimentary cycles from a drill core in the western Ross Sea provide direct evidence of orbitally controlled glacial cycles between 34 million and 31 million years ago. Initially, under atmospheric CO2 levels of ≥600 ppm, a smaller Antarctic Ice Sheet (AIS), restricted to the terrestrial continent, was highly responsive to local insolation forcing.
View Article and Find Full Text PDFThe Messinian Salinity Crisis (MSC) was a marked late Neogene oceanographic event during which the Mediterranean Sea evaporated. Its causes remain unresolved, with tectonic restrictions to the Atlantic Ocean or glacio-eustatic restriction of flow during sea-level lowstands, or a mixture of the two mechanisms, being proposed. Here we present the first direct geological evidence of Antarctic ice-sheet (AIS) expansion at the MSC onset and use a δ(18)O record to model relative sea-level changes.
View Article and Find Full Text PDFBackground: Hypoxia and hypothermia are acknowledged risk factors for those who venture into high-altitude regions. There is, however, little in situ data that can be used to quantify these risks. Here, we use 7 months of continuous meteorological data collected at the South Col of Mount Everest (elevation 7,896 m above sea level) to provide the first in situ characterization of these risks near the summit of Mount Everest.
View Article and Find Full Text PDF