J Phys Chem C Nanomater Interfaces
March 2025
Poly(benzodifurandione) (PBFDO) has emerged as a promising n-type conductive polymer (n-CP) for organic electronic applications, particularly in thermoelectrics (TE), due to its high doping efficiency and environmental stability. Unlike most high-performance p-type polymers, high-efficiency n-CPs are limited, posing a bottleneck in the TE module performance. In this study, we use first-principles electronic structure calculations to investigate the thermodynamic conditions that favor n-doping in PBFDO, focusing on the role of the temperature, chain length, and doping concentration.
View Article and Find Full Text PDFPoint defects can be used to tailor the properties of semiconductors, but can also have undesired effects on electronic and thermal transport, particularly in ultrascaled nanostructures, such as nanowires. Here we use all-atom molecular dynamics to study the effect that different concentrations and spatial distributions of vacancies have on the thermal conductivity of Si nanowires, overcoming the limitations of previous studies. Although vacancies are not as effective as the nanovoids found in porous Si, they can still reduce the thermal conductivity in ultrathin Si nanowires by more than a factor of two, when found in concentrations smaller than 1%.
View Article and Find Full Text PDF