Publications by authors named "Paolo Roncon"

Background: Vagus nerve stimulation (VNS) is approved as an adjunctive treatment for drug-resistant epilepsy. Although there is a substantial amount of literature aiming at unraveling the mechanisms of action of VNS in epilepsy, it is still unclear how the cascade of events triggered by VNS leads to its antiepileptic effect.

Objective: In this review, we integrated available peer-reviewed data on the effects of VNS in clinical and experimental research to identify those that are putatively responsible for its therapeutic effect.

View Article and Find Full Text PDF

Background: Vagus nerve stimulation (VNS) represents a valid therapeutic option for patients with medically intractable seizures who are not candidates for epilepsy surgery. Even when complete section of the nerve occurs, stimulation applied cranially to the involved nerve segment does not preclude the efficacy of VNS. Complete vagus nerve section with neuroma causing definitive left vocal cord palsy has never been previously reported in the literature.

View Article and Find Full Text PDF
Article Synopsis
  • * A study explored the effects of knocking out the SESN3 gene in rats, revealing that these rats had a delayed onset of severe seizures compared to normal rats, suggesting SESN3 may influence seizure severity.
  • * Additionally, knock-out rats exhibited lower anxiety levels and fewer comorbidities, indicating that SESN3 could play a role in both epilepsy and related mental health conditions.
View Article and Find Full Text PDF

The identification of mechanisms transforming normal to seizure-generating tissue after brain injury is key to developing new antiepileptogenic treatments. MicroRNAs (miRNAs) may act as regulators and potential treatment targets for epileptogenesis. Here, we undertook a meta-analysis of changes in miRNA expression in the hippocampal dentate gyrus (DG) following an epileptogenic insult in three epilepsy models.

View Article and Find Full Text PDF

The World Health Organization estimates that globally 2.4 million people are diagnosed with epilepsy each year. In nearly 30% of these cases, epilepsy cannot be properly controlled by antiepileptic drugs.

View Article and Find Full Text PDF

Neuronal physiology requires activity-driven protein translation, a process in which translation initiation factors are key players. We focus on eukaryotic initiation factor 4B (eIF4B), a regulator of protein translation, whose function in neurons is undetermined. We show that neuronal activity affects eIF4B phosphorylation and identify Ser504 as a phosphorylation site regulated by casein kinases and sensitive to the activation of metabotropic glutamate receptors.

View Article and Find Full Text PDF

Lack of translation of data obtained in preclinical trials to clinic has kindled researchers to develop new methodologies to increase the power and reproducibility of preclinical studies. One approach relates to harmonization of data collection and analysis, and has been used for a long time in clinical studies testing anti-seizure drugs. EPITARGET is a European Union FP7-funded research consortium composed of 18 partners from 9 countries.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are differentially expressed in the brain under pathologic conditions and may therefore represent both therapeutic targets and diagnostic or prognostic biomarkers for neurologic diseases, including epilepsy. In fact, miRNA expression profiles have been investigated in the hippocampi of patients with epilepsy in comparison with control, nonepileptic cases. Unfortunately, the interpretation of these data is difficult because surgically resected epileptic tissue is generally compared with control tissue obtained from autopsies.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal.

View Article and Find Full Text PDF

The identification of biomarkers of the transformation of normal to epileptic tissue would help to stratify patients at risk of epilepsy following brain injury, and inform new treatment strategies. MicroRNAs (miRNAs) are an attractive option in this direction. In this study, miRNA microarrays were performed on laser-microdissected hippocampal granule cell layer (GCL) and on plasma, at different time points in the development of pilocarpine-induced epilepsy in the rat: latency, first spontaneous seizure and chronic epileptic phase.

View Article and Find Full Text PDF

Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes.

View Article and Find Full Text PDF

The microRNAs (miRNAs) are small size non-coding RNAs that regulate expression of target mRNAs at post-transcriptional level. miRNAs differentially expressed under pathological conditions may help identifying mechanisms underlying the disease and may represent biomarkers with prognostic value. However, this kind of studies are difficult in the brain because of the cellular heterogeneity of the tissue and of the limited access to fresh tissue.

View Article and Find Full Text PDF

The alterations in GABA release have not yet been systematically measured along the natural course of temporal lobe epilepsy. In this work, we analyzed GABA extracellular concentrations (using in vivo microdialysis under basal and high K(+)-evoked conditions) and loss of two GABA interneuron populations (parvalbumin and somatostatin neurons) in the ventral hippocampus at different time-points after pilocarpine-induced status epilepticus in the rat, i.e.

View Article and Find Full Text PDF