Publications by authors named "Paolo Macchi"

Nucleoporins (NUPs) are proteins that comprise the nuclear pore complexes (NPCs). The NPC spans the nuclear envelope of a cell and provides a channel through which RNA and proteins move between the nucleus and the cytoplasm and vice versa. NUP and NPC disruptions have a great impact on the pathophysiology of neurodegenerative diseases (NDDs).

View Article and Find Full Text PDF

Telomeric repeat-containing RNA (TERRA) is a long non-coding RNA transcribed from telomeres that plays key roles in telomere maintenance. A fraction of TERRA is polyadenylated, and the presence of the poly(A) tail influences TERRA localization and stability. However, the mechanisms of TERRA biogenesis remain mostly elusive.

View Article and Find Full Text PDF

T helper (Th) 17 cells protect from infections and are pathogenic in autoimmunity. While human Th17 cell differentiation has been defined, the global and stepwise transcriptional changes accompanying this process remain uncharacterized. Herein, by performing transcriptome analysis of human Th17 cells, we uncovered three time-regulated modules: early, involving exclusively "signaling pathways" genes; late, characterized by response to infections; and persistent, involving effector immune functions.

View Article and Find Full Text PDF

Pediatric myelodysplastic syndrome (PMDS) is a very rare and still poorly characterized disorder. In this work, we identified novel potential targets of PMDS by determining genes with aberrant expression, which can be correlated with PMDS pathogenesis. We identified 291 differentially expressed genes (DEGs) in PMDS patients, comprising genes involved in the regulation of apoptosis and the cell cycle, ribosome biogenesis, inflammation and adaptive immunity.

View Article and Find Full Text PDF

We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components.

View Article and Find Full Text PDF

We report the construction of artificial cells that chemically communicate with mammalian cells under physiological conditions. The artificial cells respond to the presence of a small molecule in the environment by synthesizing and releasing a potent protein signal, brain-derived neurotrophic factor. Genetically controlled artificial cells communicate with engineered human embryonic kidney cells and murine neural stem cells.

View Article and Find Full Text PDF

Nup358 (also known as RanBP2) is a member of the large nucleoporin family that constitutes the nuclear pore complex. Depending on the cell type and the physiological state, Nup358 interacts with specific partner proteins and influences distinct mechanisms independent of its role in nucleocytoplasmic transport. Here, we provide evidence that Nup358 associates selectively with the axon initial segment (AIS) of mature neurons, mediated by the AIS scaffold protein ankyrin-G (AnkG, also known as Ank3).

View Article and Find Full Text PDF

The BP ssociated with ethal ellow mutation (RALY) is a member of the heterogeneous nuclear ribonucleoprotein family whose transcriptome and interactome have been recently characterized. RALY binds poly-U rich elements within several RNAs and regulates the expression as well as the stability of specific transcripts. Here we show that RALY binds mRNA and regulates its expression.

View Article and Find Full Text PDF

The RNA-binding protein HuD promotes neurogenesis and favors recovery from peripheral axon injury. HuD interacts with many mRNAs, altering both stability and translation efficiency. We generated a nucleotide resolution map of the HuD RNA interactome in motor neuron-like cells, identifying HuD target sites in 1,304 mRNAs, almost exclusively in the 3' UTR.

View Article and Find Full Text PDF

The heterogeneous nuclear ribonucleoproteins (hnRNP) form a large family of RNA-binding proteins that exert numerous functions in RNA metabolism. RALY is a member of the hnRNP family that binds poly-U-rich elements within several RNAs and regulates the expression of specific transcripts. RALY is up-regulated in different types of cancer, and its down-regulation impairs cell cycle progression.

View Article and Find Full Text PDF

We report a comprehensive study of the biocompatibility and neurocompatibility of titanium dioxide films (TiO) prepared by Pulsed Microplasma Cluster Source (PMCS). This technique uses supersonic pulsed beams seeded by clusters of the metal oxide synthesized in a plasma discharge. The final stoichiometry of the TiO thin films is tuned changing the gas mixture, achieving stoichiometric or oxygen overstoichiometric films.

View Article and Find Full Text PDF

RALY is a member of the heterogeneous nuclear ribonucleoprotein family (hnRNP), a large family of RNA-binding proteins involved in many aspects of RNA metabolism. Although RALY interactome has been recently characterized, a comprehensive global analysis of RALY-associated RNAs is lacking and the biological function of RALY remains elusive. Here, we performed RIP-seq analysis to identify RALY interacting RNAs and assessed the role of RALY in gene expression.

View Article and Find Full Text PDF

The RNA recognition motif (RRM) is the largest family of eukaryotic RNA-binding proteins. Engineered RRMs with well-defined specificity would provide valuable tools and an exacting test of the current understanding of specificity. We have redesigned the specificity of an RRM using rational methods and demonstrated retargeting of its activity in cells.

View Article and Find Full Text PDF

Rbfox proteins regulate tissue-specific splicing by targeting a conserved GCAUG sequence within pre-mRNAs. We report here that sequence-specific binding of the conserved Rbfox RRM to miRNA precursors containing the same sequence motif in their terminal loops, including miR-20b and miR-107, suppresses their nuclear processing. The structure of the complex between precursor miR-20b and Rbfox RRM shows the molecular basis for recognition, and reveals changes in the stem-loop upon protein binding.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are working on combining artificial devices with living systems, like cells, which is a really cool and tricky area of study.
  • A special part called the memristor is important because it can help computers understand and process signals, similar to how our brains work.
  • Researchers created a system where brain-like cells grow on a special material to see if it can help these cells stay alive and act like real neurons, which is a big step towards making smart technology that mimics how our brains function.
View Article and Find Full Text PDF

Induced hypoxia stress on cervical cancer derived cells (HeLa cells) leads to significant changes in their membrane lipid profiles. The lipidome of HeLa cells was characterized by a joint approach wherein liquid chromatography-mass spectrometry (LC-MS) analysis was followed by high resolution NMR measurements. Multivariate data analysis showed apparent separation between control and hypoxia-treated HeLa cells and thus demonstrated hypoxia effects on lipid metabolism.

View Article and Find Full Text PDF

Transport of RNAs to dendrites occurs in neuronal RNA granules, which allows local synthesis of specific proteins at active synapses on demand, thereby contributing to learning and memory. To gain insight into the machinery controlling dendritic mRNA localization and translation, we established a stringent protocol to biochemically purify RNA granules from rat brain. Here, we identified a specific set of interactors for two RNA-binding proteins that are known components of neuronal RNA granules, Barentsz and Staufen2.

View Article and Find Full Text PDF

RALY is a member of the heterogeneous nuclear ribonucleoproteins, a family of RNA-binding proteins generally involved in many processes of mRNA metabolism. No quantitative proteomic analysis of RALY-containing ribonucleoparticles (RNPs) has been performed so far, and the biological role of RALY remains elusive. Here, we present a workflow for the characterization of RALY's interaction partners, termed iBioPQ, that involves in vivo biotinylation of biotin acceptor peptide (BAP)-fused protein in the presence of the prokaryotic biotin holoenzyme synthetase of BirA so that it can be purified using streptavidin-coated magnetic beads, circumventing the need for specific antibodies and providing efficient pulldowns.

View Article and Find Full Text PDF

The life of an mRNA molecule begins with transcription and ultimately ends in degradation. In the course of its life, however, mRNA is examined, modified in various ways and transported before eventually being translated into proteins. All these processes are performed by proteins and non-coding RNAs whose complex interplay in the cell contributes to determining the proteome changes and the phenotype of cells.

View Article and Find Full Text PDF

Regulation of tissue size is a poorly understood process. Mammalian Staufen 2 (Stau2) is a double-stranded mRNA binding protein known to regulate dendrite formation in vitro as well as cell survival and migration in vivo. Three Stau2 isoforms have been identified in the brain of mammals.

View Article and Find Full Text PDF

Background Information: The ribonucleases (RNases) constitute a heterogeneous group of enzymes, which exert diverse and specific biological functions. Several RNases have been shown to control gene expression and cell differentiation. RNASET2, a novel member of the Rh/T2/S family of RNases, exerts micro-environmental control of malignancy in different experimental models with a general onco-suppressor activity, since it prevents cancer proliferation.

View Article and Find Full Text PDF

A recent body of evidence indicates an active role for stromal (mis)-regulation in the progression of neoplasias. Within this conceptual framework, genes belonging to the growing but still poorly characterized class of tumor antagonizing/malignancy suppressor genes (TAG/MSG) seem to play a crucial role in the regulation of the cross-talk between stromal and epithelial cells by controlling malignant growth in vivo without affecting any cancer-related phenotype in vitro. Here, we have functionally characterized the human RNASET2 gene, which encodes the first human member of the widespread Rh/T2/S family of extracellular RNases and was recently found to be down-regulated at the transcript level in several primary ovarian tumors or cell lines and in melanoma cell lines.

View Article and Find Full Text PDF

Localization of mRNAs to postsynaptic sites and their subsequent translation is thought to contribute to synapse-specific plasticity. However, the direct visualization of dendritic RNA transport in living neurons remains a major challenge. Here, we analyze the transport of Alexa-labeled RNAs microinjected into mature hippocampal neurons.

View Article and Find Full Text PDF

In Drosophila, Pumilio (Pum) is important for neuronal homeostasis as well as learning and memory. We have recently characterized a mammalian homolog of Pum, Pum2, which is found in discrete RNA-containing particles in the somatodendritic compartment of polarized neurons. In this study, we investigated the role of Pum2 in developing and mature neurons by RNA interference.

View Article and Find Full Text PDF