Anti-HIV envelope broadly neutralizing antibodies (bnAbs) are alternatives to conventional antiretrovirals with the potential to prevent and treat infection, reduce latent reservoirs, and/or mediate a functional cure. Clinical trials with "first generation" bnAbs used alone or in combination show promising antiviral effects but also highlight that additional engineering of "enhanced" antibodies will be required for optimal clinical utility, while preserving or enhancing cGMP manufacturing capability. Here we report the engineering of an anti-CD4 binding-site (CD4bs) bnAb, N49P9.
View Article and Find Full Text PDFSoluble HIV-1 envelope (Env) trimers may serve as effective vaccine immunogens. The widely utilized SOSIP trimers have been paramount for structural studies, but the disulfide bond they feature between gp120 and gp41 constrains intersubunit mobility and may alter antigenicity. Here, we report an alternative strategy to generate stabilized soluble Env trimers free of covalent gp120-gp41 bonds.
View Article and Find Full Text PDFThe pediatric live-attenuated bovine/human parainfluenza virus type 3 (B/HPIV3)-vectored vaccine expressing the prefusion-stabilized SARS-CoV-2 spike (S) protein (B/HPIV3/S-2P) was previously evaluated in vitro and in hamsters. To improve its immunogenicity, we generated B/HPIV3/S-6P, expressing S further stabilized with 6 proline mutations (S-6P). Intranasal immunization of hamsters with B/HPIV3/S-6P reproducibly elicited significantly higher serum anti-S IgA/IgG titers than B/HPIV3/S-2P; hamster sera efficiently neutralized variants of concern (VoCs), including Omicron variants.
View Article and Find Full Text PDFThe amino-acid composition of the immunoglobulin variable region has been observed to impact antibody pharmacokinetics (PK). Here, we sought to improve the PK of the broad HIV-1-neutralizing VRC01-class antibodies, VRC07-523LS and N6LS, by reducing the net positive charge in their variable domains. We used a structure-guided approach to generate a panel of antibody variants incorporating select Arg or Lys substituted to Asp, Gln, Glu, or Ser.
View Article and Find Full Text PDFUnlabelled: The pediatric live-attenuated bovine/human parainfluenza virus type 3 (B/HPIV3)-vectored vaccine expressing the prefusion-stabilized SARS-CoV-2 spike (S) protein (B/HPIV3/S-2P) was previously evaluated and in hamsters. To improve its immunogenicity, we generated B/HPIV3/S-6P, expressing S further stabilized with 6 proline mutations (S-6P). Intranasal immunization of hamsters with B/HPIV3/S-6P reproducibly elicited significantly higher serum anti-S IgA/IgG titers than B/HPIV3/S-2P; hamster sera efficiently neutralized variants of concern (VoCs), including Omicron variants.
View Article and Find Full Text PDFPediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza-virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal immunoglobulin A (IgA) and IgG responses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.
View Article and Find Full Text PDFPediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways, as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal IgA and IgG responses.
View Article and Find Full Text PDFBackground: P-selectin glycoprotein ligand-1 (PSGL-1/CD162) has been studied extensively for its role in mediating leukocyte rolling through interactions with its cognate receptor, P-selectin. Recently, PSGL-1 was identified as a novel HIV-1 host restriction factor, particularly when expressed at high levels in the HIV envelope. Importantly, while the potent antiviral activity of PSGL-1 has been clearly demonstrated in various complementary model systems, the breadth of PSGL-1 incorporation across genetically diverse viral isolates and clinical isolates has yet to be described.
View Article and Find Full Text PDFThe ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a devastating global health, social and economic crisis. The RNA nature and broad circulation of this virus facilitate the accumulation of mutations, leading to the continuous emergence of variants of concern with increased transmissibility or pathogenicity . This poses a major challenge to the effectiveness of current vaccines and therapeutic antibodies .
View Article and Find Full Text PDFThe development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies.
View Article and Find Full Text PDFThe entry of HIV-1 into host cells is initiated by the interaction of the viral envelope (Env) spike with the CD4 receptor. During this process, the spike undergoes a series of conformational changes that eventually lead to the exposure of the fusion peptide located at the N-terminus of the transmembrane glycoprotein, gp41. Recent structural and functional studies have provided important insights into the interaction of Env with CD4 at various stages.
View Article and Find Full Text PDFPassive transfer of broadly neutralizing antibodies is showing promise in the treatment and prevention of HIV-1. One class of antibodies, the VRC01 class, appears especially promising. To improve VRC01-class antibodies, we combined structure-based design with a matrix-based approach to generate VRC01-class variants that filled an interfacial cavity, used diverse third-complementarity-determining regions, reduced potential steric clashes, or exploited extended contacts to a neighboring protomer within the envelope trimer.
View Article and Find Full Text PDFBroadly neutralizing antibodies (bNAbs) are the focus of increasing interest for human immunodeficiency virus type 1 (HIV-1) prevention and treatment. Although several bNAbs are already under clinical evaluation, the development of antibodies with even greater potency and breadth remains a priority. Recently, we reported a novel strategy for improving bNAbs against the CD4-binding site (CD4bs) of gp120 by engraftment of the elongated framework region 3 (FR3) from VRC03, which confers the ability to establish quaternary interactions with a second gp120 protomer.
View Article and Find Full Text PDFThe human immunodeficiency virus type 1 (HIV-1) envelope trimer maintains a closed, metastable configuration to protect vulnerable epitopes from neutralizing antibodies. Here, we identify key hydrophobic constraints at the trimer apex that function as global stabilizers of the HIV-1 envelope spike configuration. Mutation of individual residues within four hydrophobic clusters that fasten together the V1V2, V3, and C4 domains at the apex of gp120 dramatically increases HIV-1 sensitivity to weak and restricted neutralizing antibodies targeting epitopes that are largely concealed in the prefusion Env spike, consistent with the adoption of a partially open trimer configuration.
View Article and Find Full Text PDFHistorical studies conducted in chimpanzees gave us the opportunity to investigate the basis for the different severities of liver damage and disease outcome associated with infection with wild-type hepatitis B virus (HBV) versus a precore HBV mutant, HBV/hepatitis D virus (HDV) coinfection, and HDV superinfection. Weekly samples from 9 chimpanzees were studied for immune responses by measuring plasma levels of 29 cytokines in parallel with alanine aminotransferase (ALT) levels and viral kinetics. Comparison of classic acute hepatitis B (AHB) with severe or progressive AHB and HBV/HDV coinfection or superinfection identified distinct cytokine profiles.
View Article and Find Full Text PDFOver the past decade, a series of observations linking α4β7, the principal gut-homing integrin, with various aspects of HIV-1 infection have generated considerable interest in the field of HIV-1 research. After the initial report that the major HIV-1 envelope glycoprotein, gp120, can bind to α4β7, intensive research efforts have been focused on the role of α4β7 as a key factor in HIV-1 pathogenesis and as a potential target for prevention and treatment. The interaction between α4β7 and its natural ligand, MAdCAM-1, directs infected CD4 T cells and HIV-1 virions carrying incorporated α4β7 to the gut mucosa, which may facilitate HIV-1 seeding and replication in the intestinal compartment during the early stages of infection.
View Article and Find Full Text PDFIn the RV144 HIV-1 phase III trial, vaccine efficacy directly correlated with the magnitude of the variable region 2-specific (V2-specific) IgG antibody response, and in the presence of low plasma IgA levels, with the magnitude of plasma antibody-dependent cellular cytotoxicity. Reenrollment of RV144 vaccinees in the RV305 trial offered the opportunity to define the function, maturation, and persistence of vaccine-induced V2-specific and other mAb responses after boosting. We show that the RV144 vaccine regimen induced persistent V2 and other HIV-1 envelope-specific memory B cell clonal lineages that could be identified throughout the approximately 11-year vaccination period.
View Article and Find Full Text PDFBroadly neutralizing antibodies (bNAbs) represent a promising alternative to antiretroviral drugs for HIV-1 prevention and treatment. Selected antibodies to the CD4-binding site bolster envelope trimer binding via quaternary contacts. Here, we rationally engraft a new paratope, i.
View Article and Find Full Text PDFThe human immunodeficiency virus type 1 (HIV-1) envelope (Env) trimer evades antibody recognition by adopting a closed prefusion conformation. Here, we show that two conserved tyrosines (Y173, Y177) within the second variable (V2) loop of the gp120 Env glycoprotein are key regulators of the closed, antibody-protected state of the trimer by establishing intramolecular interaction with the base of the third variable (V3) loop. Mutation of Y177 and/or Y173 to phenylalanine or alanine dramatically altered the susceptibility of diverse HIV-1 strains to neutralization, increasing sensitivity to weakly and nonneutralizing antibodies directed against diverse Env regions, consistent with the adoption of an open trimer configuration.
View Article and Find Full Text PDF