Publications by authors named "Paolo Lorenzoni"

We construct the exact partition function of the Potts model on a complete graph subject to external fields with linear and nematic type couplings. The partition function is obtained as a solution to a linear diffusion equation and the free energy, in the thermodynamic limit, follows from its semiclassical limit. Analysis of singularities of the equations of state reveals the occurrence of phase transitions of nematic type at not zero external fields and allows for an interpretation of the phase transitions in terms of shock dynamics in the space of thermodynamic variables.

View Article and Find Full Text PDF

We study normal forms of scalar integrable dispersive (not necessarily Hamiltonian) conservation laws, via the Dubrovin-Zhang perturbative scheme. Our computations support the conjecture that such normal forms are parametrized by infinitely many arbitrary functions that can be identified with the coefficients of the quasi-linear part of the equation. Moreover, in general, we conjecture that two scalar integrable evolutionary partial differential equations having the same quasi-linear part are Miura equivalent.

View Article and Find Full Text PDF