Publications by authors named "Paolo Laporta"

Article Synopsis
  • Researchers achieved passive Q-switching laser operation using a Dy-doped zirconium fluoride fiber and a semiconductor saturable absorber mirror (SESAM).
  • The laser produced stable pulse trains with a minimum pulse duration of 460 ns and a maximum repetition frequency of 206 kHz.
  • Peak pulse energy reached up to 1.7 µJ, demonstrating effective laser performance.
View Article and Find Full Text PDF

Switching of light polarization on the sub-picosecond timescale is a crucial functionality for applications in a variety of contexts, including telecommunications, biology and chemistry. The ability to control polarization at ultrafast speed would pave the way for the development of unprecedented free-space optical links and of novel techniques for probing dynamical processes in complex systems, as chiral molecules. Such high switching speeds can only be reached with an all-optical paradigm, i.

View Article and Find Full Text PDF

We present a system based on a high-energy femtosecond ytterbium laser seeding an optical parametric amplifier and a photonic crystal hollow core fiber (PCHCF) compressor for coherent anti-Stokes Raman scattering (CARS) spectroscopy. The PCHCF provides spectral broadening of the Stokes pulse which is then compressed to a duration matched to that of the pump pulse. In these conditions, the excitation efficiency of vibrational levels in the target molecules is largely improved, as the time gating effect due to the mismatch between the durations of the pump and Stokes pulses is avoided.

View Article and Find Full Text PDF

High-resolution broadband direct frequency comb spectroscopy in the mid-infrared spectral region is an extremely powerful and versatile experimental technique that allows study of the molecular structure of gaseous compounds with multiple applicative and scientific implications. Here we present the first implementation of an ultrafast Cr:ZnSe mode-locked laser covering more than 7 THz at around the emission wavelength of 2.4 μm, for direct frequency comb molecular spectroscopy with a frequency sampling of 220 MHz and a frequency resolution of ∼100 kHz.

View Article and Find Full Text PDF

We report on a compact and versatile time-domain spectrometer operating in the THz spectral region from 0.2 to 2.5 THz based on ultrafast Yb:CALGO laser and photo-conductive antennas.

View Article and Find Full Text PDF

Vibrational spectroscopies offer great potential for standoff detection of chemical and biological warfare agents, avoiding contamination to the operator and equipment. Among them, particularly promising is Coherent anti-Stokes Raman scattering (CARS) spectroscopy, using synchronized pump/Stokes laser pulses to set up a vibrational coherence of target molecules at a laser focus, which is read by further interaction with a probe pulse, resulting in the emission of a coherent beam detectable at a distance. CARS has previously demonstrated the capability to detect bacterial spores based on the Raman spectrum of the characteristic molecule calcium dipicolinate (CaDPA); however, a complex and bulky laser technology, which is only suitable for a laboratory environment, was employed.

View Article and Find Full Text PDF

A laser system for standoff coherent anti-Stokes Raman scattering (CARS) spectroscopy of various materials under ambient light conditions is presented. The system is based on an ytterbium laser and an ultrafast optical parametric amplifier for the generation of a broadband pump tunable from 880 to 930 nm, a Stokes at 1025 nm, and a narrowband probe at 512.5 nm.

View Article and Find Full Text PDF

The transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature.

View Article and Find Full Text PDF

We report on a compact optical frequency comb, operating in the wavelength range from 670 to 1500 nm, based on diode-pumped low-noise femtosecond Yb:CALGO amplified laser system. Both the carrier-envelope offset and repetition rate are phase-locked to reference synthesizers. A full characterization of the frequency comb, in terms of frequency stability, phase noise analysis, and optical beating against a single-frequency non-planar ring oscillator Nd:YAG laser, is presented, showing the excellent properties of the Yb:CALGO comb.

View Article and Find Full Text PDF

The enhancement of nonlinear optical effects nanoscale engineering is a hot topic of research. Optical nanoantennas increase light-matter interaction and provide, simultaneously, a high throughput of the generated harmonics in the scattered light. However, nanoscale nonlinear optics has dealt so far with static or quasi-static configurations, whereas advanced applications would strongly benefit from high-speed reconfigurable nonlinear nanophotonic devices.

View Article and Find Full Text PDF

A fiber laser system for standoff detection of chemical and biological species by coherent anti-Stokes Raman scattering is presented. The system is based on an ytterbium fiber laser and a hollow-core photonic crystal fiber for generation of broadband pump/Stokes pulses. High-resolution Raman spectra encompassing the fingerprint region (600-1600) are obtained for toluene, and two simulants of chemical and biological warfare agents, specifically dimethyl methylphosphonate and sodium dipicolinate.

View Article and Find Full Text PDF

Modulation transfer spectroscopy is used to demonstrate absolute frequency stabilization of an 8.6-µm-wavelength quantum cascade laser against a sub-Doppler absorption of the molecule. The obtained spectral emission properties are thoroughly characterized through a self-referenced optical frequency comb, stabilized against either a GPS-disciplined Rb clock or a 1.

View Article and Find Full Text PDF

Pulse compression in a short, normal dispersion photonic-crystal fiber is investigated with a Yb:CaGdAlO laser pumped by a low-power fiber-coupled single-mode diode that delivers 70-fs pulses at 1050 nm central wavelength, with 45-mW average power at 60 MHz repetition rate. A simple and power-efficient compressor based on a ∼15-cm long, low-cost commercial nonlinear fiber, with normal dispersion at the laser wavelength, produces pulses as short as 14.9 fs, corresponding to ∼4.

View Article and Find Full Text PDF

We report on efficient supercontinuum generation in tapered suspended-core $ {{\rm As}_{39}}{{\rm Se}_{61}} $AsSe fibers pumped by a femtosecond mode-locked Cr:ZnSe laser. The supercontinuum spectrum spans the mid-infrared spectral region from 1.4 to 4.

View Article and Find Full Text PDF

We demonstrate nonlinear compression of pulses at 1.03 µm and repetition rate of 200 kHz generated by a ytterbium fiber laser using two cascaded all-solid-state multipass cells. The pulse duration has been compressed from 460 to 22 fs, corresponding to a compression factor of ∼21.

View Article and Find Full Text PDF

Frequency combs have made optical metrology accessible to hundreds of laboratories worldwide and they have set new benchmarks in multi-species trace gas sensing for environmental, industrial and medical applications. However, current comb spectrometers privilege either frequency precision and sensitivity through interposition of a cw probe laser with limited tuning range, or spectral coverage and measurement time using the comb itself as an ultra-broadband probe. We overcome this restriction by introducing a comb-locked frequency-swept optical synthesizer that allows a continuous-wave laser to be swept in seconds over spectral ranges of several terahertz while remaining phase locked to an underlying frequency comb.

View Article and Find Full Text PDF

We study the frequency noise and the referencing to a near-infrared frequency comb of a widely tunable external-cavity quantum-cascade-laser that shows a relatively narrow free-running emission linewidth of 1.7 MHz. The frequency locking of the laser to the comb further narrows its linewidth to 690 kHz and enables sub-Doppler spectroscopy on an NO transition of the ν band near 7.

View Article and Find Full Text PDF

We report a passively mode-locked Dy:fluoride fiber laser emitting around 3.1 μm based on the nonlinear polarization evolution technique in a ring configuration, using in-band pumping at 2.8 μm.

View Article and Find Full Text PDF

We demonstrate a Fourier transform (FT) coherent anti-Stokes Raman scattering (CARS) spectroscopy system based on fiber technology with ultra-broad spectral coverage and high-sensitivity. A femtosecond ytterbium fiber oscillator is amplified and spectrally broadened in a photonic crystal fiber to synthesize pulses with energy of 14 nJ at 1040 nm, that are compressed to durations below 20 fs. The resulting pulse train is coupled to a FT-CARS interferometer enabling measurement of high-quality CARS spectra with Raman shifts of ~3000 cm and signal to noise ratio up to 240 and 690 with acetonitrile and polystyrene samples, respectively, for observation times of 160 µs; a detection limit of one part per thousand is demonstrated with a cyanide/water solution.

View Article and Find Full Text PDF

We report for the first time the frequency locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locked laser source is exploited to carry out molecular spectroscopy around 7.8 μm with a line-centre frequency combined uncertainty of ~63 kHz.

View Article and Find Full Text PDF

We demonstrate a fiber-format system for dual-comb coherent anti-Stokes Raman scattering spectroscopy. The system is based on two ytterbium fiber (Yb) femtosecond lasers at repetition frequencies of 94 MHz, a Yb amplifier, and a photonic crystal fiber for spectral broadening and generation of pulses with a central wavelength of 1040 nm and durations in the sub-20-fs regime. We observed Raman spectra of acetonitrile and ethyl acetate with spectral coverage from 100 to 1300  cm, resolution of 8  cm, and a signal-to-noise ratio of around 100, when averaging over 10 acquisitions.

View Article and Find Full Text PDF

We report on a room-temperature Kerr-lens mode-locked Cr:ZnSe femtosecond laser operating at around 2.4 μm emission wavelength. Self-starting nearly transform-limited pulse trains with a minimum duration of 47 fs, corresponding to six optical cycles, and average output power of 0.

View Article and Find Full Text PDF

We propose a novel approach to cavity-ring-down-spectroscopy (CRDS) in which spectra acquired with a frequency-agile rapid-scanning (FARS) scheme, i.e., with a laser sideband stepped across the modes of a high-finesse cavity, are interleaved with one another by a sub-millisecond readjustment of the cavity length.

View Article and Find Full Text PDF

We report on absolute measurements of saturated-absorption line-center frequencies of room-temperature trifluoromethane using a quantum cascade laser at 8.6 μm and the frequency modulation spectroscopy method. Absolute calibration of the laser frequency is obtained by direct comparison with a mid-infrared optical frequency comb synthesizer referenced to a radio-frequency Rb standard.

View Article and Find Full Text PDF