Real-time 3D fluorescence microscopy is crucial for the spatiotemporal analysis of live organisms, such as neural activity monitoring. The eXtended field-of-view light field microscope (XLFM), also known as Fourier light field microscope, is a straightforward, single snapshot solution to achieve this. The XLFM acquires spatial-angular information in a single camera exposure.
View Article and Find Full Text PDFReal-time 3D fluorescence microscopy is crucial for the spatiotemporal analysis of live organisms, such as neural activity monitoring. The eXtended field-of-view light field microscope (XLFM), also known as Fourier light field microscope, is a straightforward, single snapshot solution to achieve this. The XLFM acquires spatial-angular information in a single camera exposure.
View Article and Find Full Text PDFAASM guidelines are the result of decades of efforts aiming at standardizing sleep scoring procedure, with the final goal of sharing a worldwide common methodology. The guidelines cover several aspects from the technical/digital specifications, e.g.
View Article and Find Full Text PDFStudy Objectives: Inter-scorer variability in scoring polysomnograms is a well-known problem. Most of the existing automated sleep scoring systems are trained using labels annotated by a single-scorer, whose subjective evaluation is transferred to the model. When annotations from two or more scorers are available, the scoring models are usually trained on the scorer consensus.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
In this work we introduce a novel meta-learning method for sleep scoring based on self-supervised learning. Our approach aims at building models for sleep scoring that can generalize across different patients and recording facilities, but do not require a further adaptation step to the target data. Towards this goal, we build our method on top of the Model Agnostic Meta-Learning (MAML) framework by incorporating a self-supervised learning (SSL) stage, and call it S2MAML.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
November 2021
Deep learning is widely used in the most recent automatic sleep scoring algorithms. Its popularity stems from its excellent performance and from its ability to process raw signals and to learn feature directly from the data. Most of the existing scoring algorithms exploit very computationally demanding architectures, due to their high number of training parameters, and process lengthy time sequences in input (up to 12 minutes).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
The present study evaluates how effectively a deep learning based sleep scoring system does encode the temporal dependency from raw polysomnography signals. An exhaustive range of neural networks, including state of the art architecture, have been used in the evaluation. The architectures have been assessed using a single-channel EEG Fpz-Cz from the open source Sleep-EDF expanded database.
View Article and Find Full Text PDFClinical sleep scoring involves a tedious visual review of overnight polysomnograms by a human expert, according to official standards. It could appear then a suitable task for modern artificial intelligence algorithms. Indeed, machine learning algorithms have been applied to sleep scoring for many years.
View Article and Find Full Text PDFPrognostication for comatose patients after cardiac arrest is a difficult but essential task. Currently, visual interpretation of electroencephalogram (EEG) is one of the main modality used in outcome prediction. There is a growing interest in computer-assisted EEG interpretation, either to overcome the possible subjectivity of visual interpretation, or to identify complex features of the EEG signal.
View Article and Find Full Text PDFWe propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
June 2016
Blind deconvolution is the problem of recovering a sharp image and a blur kernel from a noisy blurry image. Recently, there has been a significant effort on understanding the basic mechanisms to solve blind deconvolution. While this effort resulted in the deployment of effective algorithms, the theoretical findings generated contrasting views on why these approaches worked.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
May 2012
Portable light field (LF) cameras have demonstrated capabilities beyond conventional cameras. In a single snapshot, they enable digital image refocusing and 3D reconstruction. We show that they obtain a larger depth of field but maintain the ability to reconstruct detail at high resolution.
View Article and Find Full Text PDFRetinal fundus images acquired with nonmydriatic digital fundus cameras are versatile tools for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relatively low cost, these cameras can be employed by operators with limited training for telemedicine or point-of-care (PoC) applications. We propose a novel technique that uses uncalibrated multiple-view fundus images to analyze the swelling of the macula.
View Article and Find Full Text PDFDefocus can be modeled as a diffusion process and represented mathematically using the heat equation, where image blur corresponds to the diffusion of heat. This analogy can be extended to non-planar scenes by allowing a space-varying diffusion coefficient. The inverse problem of reconstructing 3-D structure from blurred images corresponds to an "inverse diffusion" that is notoriously ill-posed.
View Article and Find Full Text PDF