Background: The study of RNA has been dramatically improved by the introduction of Next Generation Sequencing platforms allowing massive and cheap sequencing of selected RNA fractions, also providing information on strand orientation (RNA-Seq). The complexity of transcriptomes and of their regulative pathways make RNA-Seq one of most complex field of NGS applications, addressing several aspects of the expression process (e.g.
View Article and Find Full Text PDFMammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che-1, a RNA polymerase II-binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
September 2014
There is growing evidence that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) plays a role in breast cancer prevention and survival. It elicits a variety of antitumor activities like controlling cellular differentiation, proliferation and angiogenesis. Most of its biological effects are exerted via its nuclear receptor which acts as a transcriptional regulator.
View Article and Find Full Text PDFBackground: The advent of massively parallel sequencing technologies (Next Generation Sequencing, NGS) profoundly modified the landscape of human genetics.In particular, Whole Exome Sequencing (WES) is the NGS branch that focuses on the exonic regions of the eukaryotic genomes; exomes are ideal to help us understanding high-penetrance allelic variation and its relationship to phenotype. A complete WES analysis involves several steps which need to be suitably designed and arranged into an efficient pipeline.
View Article and Find Full Text PDFA comprehensive knowledge of all the factors involved in splicing, both proteins and RNAs, and of their interaction network is crucial for reaching a better understanding of this process and its functions. A large part of relevant information is buried in the literature or collected in various different databases. By hand-curated screenings of literature and databases, we retrieved experimentally validated data on 71 human RNA-binding splicing regulatory proteins and organized them into a database called 'SpliceAid-F' (http://www.
View Article and Find Full Text PDFBackground & Aims: miR-224 is up-regulated in human HCCs as compared to both paired peri-tumoral cirrhotic tissues and cirrhotic livers without HCC. Here, we have cloned the miR-224 regulatory region and characterized its transcriptional regulation by the NFκB-dependent inflammatory pathways.
Methods: Mature miRNA expression was evaluated by a 2 step stem-loop real-time RT-PCR.
The MITOchondrial genome database of metaZOAns (MitoZoa) is a public resource for comparative analyses of metazoan mitochondrial genomes (mtDNA) at both the sequence and genomic organizational levels. The main characteristics of the MitoZoa database are the careful revision of mtDNA entry annotations and the possibility of retrieving gene order and non-coding region (NCR) data in appropriate formats. The MitoZoa retrieval system enables basic and complex queries at various taxonomic levels using different search menus.
View Article and Find Full Text PDFThe transcription factor interferon regulatory factor 6 (IRF6) regulates craniofacial development and epidermal proliferation. We recently showed that IRF6 is a component of a regulatory feedback loop that controls the proliferative potential of epidermal cells. IRF6 is transcriptionally activated by p63 and induces its proteasome-mediated down-regulation, thereby limiting keratinocyte proliferative potential.
View Article and Find Full Text PDFAlternative splicing is emerging as a major mechanism for the expansion of the transcriptome and proteome diversity, particularly in human and other vertebrates. However, the proportion of alternative transcripts and proteins actually endowed with functional activity is currently highly debated. We present here a new release of ASPicDB which now provides a unique annotation resource of human protein variants generated by alternative splicing.
View Article and Find Full Text PDFThe analysis of the great extent of data generated by using DNA microarrays technologies has shown that the transcriptional response to radiation can be considerably different depending on the quality, the dose range and dose rate of radiation, as well as the timing selected for the analysis. At present, it is very difficult to integrate data obtained under several experimental conditions in different biological systems to reach overall conclusions or build regulatory models which may be tested and validated. In fact, most available data is buried in different websites, public or private, in general or local repositories or in files included in published papers; it is often in various formats, which makes a wide comparison even more difficult.
View Article and Find Full Text PDFMitoZoa is a relational database collecting curated metazoan entries of complete or nearly complete mitochondrial genomes (mtDNA), specifically designed to assist comparative studies of mitochondrial genome-level features in a given taxon or in congeneric species of Metazoa. The principal novelties of MitoZoa are extensive corrections/improvements of the mtDNA annotations and the possibility of easily searching for data on: (1) gene order, a genomic feature useful as phylogenetic marker; (2) sequence, size and location of non-coding regions, likely containing the regulatory signals for mtDNA replication and transcription; (3) mt features/sequences of congeneric species, where saturation phenomena in nucleotide substitutions and gene order changes are expected to be absent or at least minimal. In addition, MitoZoa allows the exploration of basic mt features such as molecule topology, genetic code, gene content, and compositional parameters of the entire genome.
View Article and Find Full Text PDFTechnical advances such as the development of molecular cloning, Sanger sequencing, PCR and oligonucleotide microarrays are key to our current capacity to sequence, annotate and study complete organismal genomes. Recent years have seen the development of a variety of so-called 'next-generation' sequencing platforms, with several others anticipated to become available shortly. The previously unimaginable scale and economy of these methods, coupled with their enthusiastic uptake by the scientific community and the potential for further improvements in accuracy and read length, suggest that these technologies are destined to make a huge and ongoing impact upon genomic and post-genomic biology.
View Article and Find Full Text PDFBackground: One of the most interesting problems in molecular immunology is epitope mapping, i.e. the identification of the regions of interaction between an antigen and an antibody.
View Article and Find Full Text PDFAlternative splicing (AS) is now emerging as a major mechanism contributing to the expansion of the transcriptome and proteome complexity of multicellular organisms. The fact that a single gene locus may give rise to multiple mRNAs and protein isoforms, showing both major and subtle structural variations, is an exceptionally versatile tool in the optimization of the coding capacity of the eukaryotic genome. The huge and continuously increasing number of genome and transcript sequences provides an essential information source for the computational detection of genes AS pattern.
View Article and Find Full Text PDFThe Protein Model Database (PMDB) is a public resource aimed at storing manually built 3D models of proteins. The database is designed to provide access to models published in the scientific literature, together with validating experimental data. It is a relational database and it currently contains >74,000 models for approximately 240 proteins.
View Article and Find Full Text PDFGenoMiner is a software tool that searches for regions of similarity between user-submitted genome or transcript sequences and user-specified whole genome assemblies. The program then identifies conserved sequence tags (CSTs) in these homologous regions and provides a prediction of their coding or non-coding nature. The analysis is carried out through three steps: (1) definition of sequence regions homologous to the query sequence in the selected target genomes by a fast BLAT alignment; (2) identification of CSTs by a more sensitive BLAST-like alignment between the query and the homologous regions in the target genomes and (3) assessment of the coding or non-coding nature of detected CSTs through the computation of a suitable coding potential score.
View Article and Find Full Text PDF